Momentum Strategies using
Risk-adjusted Stock Selection Criteria

Svetlozar (Zari) T. Rachev
University of Karlsruhe and University of California
at Santa Barbara
Chief-Scientist (FinAnalytica Inc.)
February 27, 2009, University of Zurich

Copyright: Svetlozar Rachev -- not to be distributed without permission
• Introduction

 • Stable distribution approach for treatment of non-normal data
 • Risk-adjusted criteria for stock selection
 • Construction of momentum portfolios
 • Results and performance evaluation
 • Formulation of the zero-value optimal portfolio problem
 • Conclusions
Momentum profitability poses a strong challenge to the theory of asset pricing – momentum effect is the most challenging asset pricing anomaly

The current research is unable to provide a consistent risk-premium based explanation*

- A momentum effect captures the short-term (6 to 12 months) return continuation effect that stocks with high returns over the past three to 12 months tend to outperform in the future (Jegadeesh & Titman, 1993).

- Very simple trading strategy – portfolio is constructed based on cumulative return criterion over certain time-horizon

- Historically momentum strategy earned profits of about 1% per month over the following 12 months.

- The profitability cannot be explained with the existing multi-factor models and macroeconomic-based risk explanations

*) The finding that returns exhibit momentum behavior at intermediate horizons is at odds with market efficiency.
There are different views and arguments for explanation of empirical findings of profitability of momentum strategies

What is the real cause of the momentum effect?

- Results are **spurious or product of “data mining”** – this argument has been neutralized through consistent findings of the momentum effect in various markets and across different time periods.

- Results are **compensation for risk bearing** – current findings are inconclusive and contradictory.

- **Irrational behaviour of investors** is causing momentum – behavioural theories of overreaction and under-reaction have also been formulated.
Our approach enables the modification of the decision criteria for portfolio construction and allows treatment of non-Gaussian returns

We extend the momentum strategy methodology in several ways

- To reflect risk-return trade-off in portfolio selection, we use of risk-adjusted criterion instead of return only criterion for portfolio construction
- Use of daily data rather than monthly data, facilitating better capture of distributional properties of the data
- Risk-return criteria have form of risk-return ratios compliant with coherent risk measures
- Risk-return criteria are applicable when stock returns are not normally distributed
Agenda

• Introduction

• Stable distribution approach for treatment of non-normal data

• Risk-adjusted criteria for stock selection

• Construction of momentum Portfolios

• Results and performance evaluation

• Formulation of the zero-value optimal portfolio problem

• Conclusions
Empirical properties of financial time series show stylized facts that deviate from normal Gaussian assumption

Gaussian distribution is not a realistic assumption for stock returns

- High empirical kurtosis \Rightarrow heavy tailedness
- Asymmetric empirical distribution
- Slowly decaying correlation of squared returns \Rightarrow long-range dependence
- Heteroskedasticity (volatility clustering)
Example 1: Empirical PDF of 10, 15, 30 and 60-minutes returns of Deutsche Bank stock prices; normal and stable fits
Example 2: Empirical and Stable Densities of DAX 30

Notes:
1. Graphics based on less than 1500 observations tend to be less representative.
2. Graphics are sensitive when based on an asset which is included in a scenario.
3. Since empirical and normal densities are based on daily changes, reasonable graphics assume time horizon set to 1.
Example 2 (cont.): Comparison between Empirical and Stable Densities of DAX 30

Notes: 1. Graphics based on less then 1500 observations tend to be less representative. 2. Graphics are senseless when based on an asset which is included in a scenario. 3. Since empirical and normal densities are based on daily changes, reasonable graphics assume time horizon set to 1.
Stable distributions and idea of stochastic subordination enable postulation of richer models for price behaviour

Subordinated model for stock prices (Bochner (1955), Mandelbrot & Taylor (1967), Clark (1973), Mandelbrot et al. (1998))

- Stochastically subordinated stock price

\[Z(t) = S \circ T(t) = S(T(t)) \]

- \(\alpha\)-stable processes clock effects (on all time scales)
- Assumptions:

\[S(t) \text{ and } T(t) \text{ independent,} \]
\[S(t): \mathbb{R}^+ \to \mathbb{R}, \]
\[T(t): \mathbb{R}^+_0 \to \mathbb{R}^+_0, T(0) = 0 \text{ a.s., non-decreasing paths} \]
Features of the subordinated model for stock prices

Subordinated model expresses the original idea: (log) prices follow Brownian motion under a suitable transformation of the time scale.\(^2\)

- \(T(t) = \text{No. of transactions up to time } t\)
- \(S(t) = \text{tick-by-tick price}\)

Features of the subordinated model

- Heavy tails, with the stability index depending on time
- Market clock effects (on all time scales)
- Long-range dependence

\(^2\) On days when no new information is available, trading is slow, and the price process evolves slowly. On days when new information violates old expectations, trading is brisk, and the price process evolves much faster. (Clark, 1973)
Application of the stable models extends the common applications in assessment of market and credit risk, portfolio optimization and forecasting.

Extended stable GARCH (or tempered stable ARMA-GARCH) models are developed for range of applications (Cognity Integrated Risk Management System, FinAnalytica, Inc.)

- Value at Risk Analysis
- Credit Risk Modeling
- Portfolio Optimization
- Forecasting / (Factor models)
- Asset Allocation
• Introduction

• Stable distribution approach for treatment of non-normal data

• Risk-adjusted criteria for stock selection

• Construction of momentum Portfolios

• Results and performance evaluation

• Formulation of the zero-value optimal portfolio problem

• Conclusions
Momentum methodology is extended by applying stock selection criteria in risk-return framework

We analyze several risk-return ratios that differ in treatment of risk and distributional behavior of data

• The **Sharpe Ratio** is the ratio between the expected excess return and its standard deviation:

\[
\rho(r) = \frac{E(r - r_f)}{STD_{(r-r_f)}}
\]

• **STARR\(_{(1-\alpha)100\%}\) (CVaR\(_{(1-\alpha)100\%}\) Ratio)** is the ratio between the expected excess return and its conditional value at risk:

\[
\rho(r) = \frac{E(r - r_f)}{CVaR_{(1-\alpha)100\%}(r - r_f)}
\]

© 2009 Svetlozar T. Rachev
Alternative risk-return ratios use ETL as a measure of risk and are able to capture heavy tail behaviour in the data.

Alternative R-Ratio is the ratio of the expected tail return above the level, divided by the expected tail loss.

- **R-ratio** with parameters α and β in $[0,1]$.

$$\rho(r) = \frac{ETL_{\alpha 100\%}(r_f - r)}{ETL_{\beta 100\%}(r - r_f)}$$

- Here, if r is a return on a portfolio or asset, and $ETL\alpha(r)$ is defined as

$$ETL_{\alpha 100\%}(r) = E(\|l\| > VaR_{(1-\alpha) 100\%}(r))$$

 where

$$CVaR_{(1-\alpha) 100\%}(r) = ETL_{\alpha 100\%}(r).$$

- The idea behind the R-ratio is to try to simultaneously capture the maximum level of return and get insurance for the maximum loss.

- The choice of a specific tail probabilities selects a particular risk measure in the ETL class of measures and reflects the risk and return objectives of an investor.
Introduction

Stable distribution approach for treatment of non-normal data

Risk-adjusted criteria for stock selection

Construction of momentum portfolios

Results and performance evaluation

Formulation of the zero-value optimal portfolio problem

Conclusions
Momentum portfolios are formed using risk-return criteria and daily data

Data and Methodology

- We use **daily data of 382 stocks included in the S&P Index** in the period January 1, 1992 to December 31, 2003. (stocks with equal and complete return history)

- **Four “J-month/K-month” strategies** based on the ranking and holding periods of 6 and 12 months and **10 criteria** are examined (i.e., 6/6, 6/12, 12/6 and 12/12 strategies, overall 40 strategies)

- Zero-investment portfolio is constructed at the end of each ranking period by simultaneously selling winners and losers

- 10% of the stocks with the highest value of stock selection criterion in the ranking period constitute winner portfolio (e.g., highest decile) and 10% of the stocks with the lowest values the loser portfolio

- Winner and loser portfolio are equally weighted at formation and held for subsequent K-months of the holding period
Optimization of winner and loser portfolios based on risk-return criteria leads to an optimized-weighted strategy

Portfolio selection and optimization approach follows usual Markowitz (1962) approach with portfolio choice based on reward-risk criteria

- For every risk-return criterion $\rho(\cdot)$, we compute the optimal winner portfolio of the max optimization problem and optimal loser portfolio of the min optimization problem:

$$\max_x \rho(x'r) \quad \text{s.t.} \quad \sum_{i=1}^n x_i = 1; x_i \geq 0; \quad i = 1,\ldots,N$$

$$\min_y \rho(y'r) \quad \text{s.t.} \quad \sum_{i=1}^n y_i = 1; y_i \geq 0; \quad i = 1,\ldots,N$$

- where ρ is the ratio criterion, x_i and y_i are optimized weights in the winner and loser portfolios respectively, and N equals the number of stocks in winner or loser portfolio
Impact of transaction costs on momentum portfolios

Transaction Costs as a cost of implementing a trading strategy

Issues in consideration with measuring transaction costs impact

- What realistic model of transaction cost impact to apply?

- Risk and liquidity characteristics of extreme portfolios may have impact on the assumptions of the trading cost model

- We use as estimate of the one-way total trading costs that averages 0.78% of the value of the traded stock (assumption based on Chalmers, Edelen, and Kadlec, 2002)
• Introduction

• Stable distribution approach for treatment of non-normal data

• Risk-adjusted criteria for stock selection

• Construction of momentum Portfolios

• **Results and performance evaluation**

 • Formulation of the zero-value optimal portfolio problem

 • Conclusions
Comparison of equal-weighted and optimized-weighted 6/6 strategy after adjustment for transaction costs shows advantage of using alternative ratio

Analysis of the final wealth of momentum portfolio for equal-weighted and optimized-weighted 6/6 strategy using different risk-return criteria, January 92-December 2003

<table>
<thead>
<tr>
<th>Risk-Return Ratio</th>
<th>Portfolio Final Wealth</th>
<th>Stock Ranking Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cumulative Return</td>
</tr>
<tr>
<td>Equal-weighted Strategy</td>
<td>No transaction cost</td>
<td>1.0774 (8.98%)</td>
</tr>
<tr>
<td></td>
<td>Transaction cost 0.78%</td>
<td>0.7221 (6.02%)</td>
</tr>
<tr>
<td></td>
<td>Transaction cost 0.485%</td>
<td>0.8905 (7.42%)</td>
</tr>
<tr>
<td>Optimized-weighted Strategy</td>
<td>No transaction cost</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Transaction cost 0.78%</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Transaction cost 0.485%</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
We analyze the graph of a sample path of cumulative realized profits of winner and loser portfolios across holding periods for different criteria.

Cumulative realized returns of winner and loser portfolios for a 6-month/6-month momentum strategy and STARR(50%) criterion.
Agenda

• Introduction

• Stable distribution approach for treatment of non-normal data

• Risk-adjusted criteria for stock selection

• Construction of momentum portfolios

• Results and performance evaluation

• **Formulation of the zero-value optimal portfolio problem**

• Conclusions
Further optimization approaches based on a two-step and one-step procedure are evaluated and compared- FinAnalytica’s Approach

Two-step procedure optimal portfolio problem:

1. **Selection of winners and losers** according to selection criterion (cumulative return, risk-adjusted criteria or alphas from specific factor model)

2. **Solving the zero-value optimal portfolio problem** with the winners and losers chosen in the step 1).

One-step procedure uses modified objective of the two-step procedure

- Search for the best optimal solution in one step zero-value optimization with objective function reflecting the tradeoff between the expected excess return at given level, and (i) tail risk at a given level and (ii) transaction costs.

We compare the two-step procedure (benchmark model of a large FI) with one-step procedure using different search methods
The results show clear advantage of using one-step procedure with direct GA method over the benchmark model based on two-step procedure.

Comparison of Cumulative Return of the two-step benchmark model and the one-step optimization approach - Empirical results and observations for the one-step strategy in the 10 year period 09/1995 – 08/2005

Average return **18.19%**
Agenda

- Introduction
- Stable distribution approach for treatment of non-normal data
- Risk-adjusted criteria for stock selection
- Formation of momentum Portfolios
- Results and performance evaluation
- Formulation of the zero-value optimal portfolio problem

- Conclusions
The results show that alternative risk-return criteria using expected tail loss produce better risk-adjusted results and less heavy tailed distributions

Conclusions

• Alternative risk-return ratios using the ETL can be conveniently applied at the individual stock level for distributions exhibiting heavy tails

• Additional advantage of alternative criteria is to model an investor’s risk aversion for downside risk and desired risk-return profile

• Alternative ratios provide better risk-adjusted performance, outperforming cumulative return criterion will generally depend on the data sample properties

• Traditional Sharpe ratio criterion provides the worst performance indicating inappropriateness of the dispersion risk measure

• An investor pursuing alternative strategies using R-ratio will accept lower risk due to heavy tails than the cumulative return investor

• Formulation of the zero-value portfolio problem using one-step optimization outperforms two-step procedure
The results show that risk-return ratios criteria compliant with coherent risk measure of expected shortfall produce better results than traditional criteria.

Conclusion and future research

- **Conceptually**, risk-return ratios that are based on the coherent risk measure of the expected shortfall can be conveniently applied at the individual stock and portfolio level.

- **Methodologically**, we utilize daily data and capture the distributional properties of stock returns and their risk component at a different threshold level of the tail distribution.

- **Empirically**, results show our ratios drive balanced risk-return performance and for every examined strategy produce better results than a simple cumulative return and the traditional Sharpe ratio criterion.

- **Future research**: General analysis of winners and winners portfolios (total optimization)

- **Future Research**: Stable Factor models “explaining” the profits from winners and losers R-ratio optimization
Research publications

- Rachev, S., Menn C. and Fabozzi F. *Fat Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing*, Wiley-Finance, 2005
