Firm Value and Managerial Incentives: A Stochastic Frontier Approach

Michel A. Habib Alexander Ljungqvist

First version: January 2000
Current version: April 2003

This research has been carried out within the NCCR FINRISK project on “Conceptual Issues in Financial Risk Management”.

The National Centers of Competence in Research (NCCR) are research instruments of the Swiss National Science Foundation.
Firm Value and Managerial Incentives: A Stochastic Frontier Approach

Michel A. Habib2 Alexander Ljungqvist3

First Version: January 2000 Current version: April 21, 2003

1We thank Sudipto Bhattacharya, Michael Devereux, Julian Franks, Charles Goodhart, Bill Greene, Cam Harvey, Jan Mahrt-Smith, Pierre Mella-Barral, Henri Servaes, David Yermack, and an anonymous referee for helpful comments; Tim Coelli for continued advice throughout this project; Eli Ofek for generous help in gathering board size data; seminar participants at Duke University, the 2000 NYSE-CEPR Symposium in Financial Markets (Gerzensee), the London School of Economics, the 2000 TMR Conference at Universitat Pompeu Fabra, and the universities of Bristol, Mannheim, Oxford, Vienna, Warwick, and Zurich for helpful comments; David Stolin and Deborah Lisburne for excellent research assistance; and Forbes and I/B/E/S for permission to use their data. We gratefully acknowledge funding from the European Union (TMR grant no. ERBFMRXCT960054) and NCCR FinRisk (Habib).

2Swiss Banking Institute, University of Zurich, Plattenstrasse 14, CH-8032 Zurich, Switzerland. Tel: +41-1-634-2507, fax: +41-1-634-4903, e-mail: habib@isb.unizh.ch.

3NYU Stern School of Business, 44 West Fourth Street, Suite 9-190, New York, NY 10012-1126. Tel: 212-998-0304, fax: 212-995-4233, e-mail: aljungqv@stern.nyu.edu.
Abstract

We provide a direct estimate of the magnitude of agency costs in U.S. publicly-held firms. Using a sample of 1,307 firms in 1992-1997, we compute an explicit performance benchmark that compares a firm’s actual Tobin’s Q to the Q^* of a hypothetical fully-efficient firm having the same inputs and characteristics as the original firm. The Q of the average sample firm is around 16% below its Q^*, equivalent to a 1.432 million reduction in its potential market value. We relate the shortfall in value to the incentives provided to CEOs. Boards appear to grant CEOs too few shares and too many options which are insufficiently sensitive to firm risk. Our results do not appear to be driven by endogeneity biases.
1 Introduction

Do managers maximize firm value when they are not the sole shareholder? If they tend not to, how effective are compensation contracts and other incentive schemes in reducing possible conflicts between them and the shareholders whose interests they are meant to further? Do boards structure such contracts and incentives optimally, and if not, how large are the remaining shortfalls from value maximization in economic magnitude? And how large would be the benefits of strengthening managerial incentives?

These empirical questions are at the heart of corporate finance theory, starting with Berle and Means (1932) and continuing with Jensen and Meckling (1976) and Demsetz (1983). Yet the empirical literature provides few direct estimates of the magnitude of agency costs. Ang, Cole, and Lin (2000) provide an estimate of such costs in small corporations, but there appears to be no counterpart to their study for large corporations. Perhaps this is because, in the absence of the 100% manager-owned firms that constitute the benchmark of Ang et al.’s study, there is no obvious benchmark against which a firm’s actual value can be judged in the case of large firms.

Ideally, the benchmark would be each firm’s maximum value. While this is not observable, it is possible to construct a benchmark that measures the hypothetical value a firm would obtain, were it to match the performance of its best-performing peer. Clearly, to be useful, such a benchmark needs to hold constant the firm’s opportunity set and characteristics: a utility company is unlikely to match the performance of, say, Microsoft. It also needs to be stochastic, to allow for errors in the estimation and so prevent the benchmark from being influenced by outliers.

In this paper, we show how such a benchmark can be estimated using data on a large sample of U.S. companies from the 1990s. The average firm in our sample attains a value that is around 16% below its benchmark value. Translated into dollars, this means that the average sample firm could increase its market value by $1,432 million were it to match the performance of its best-performing peer.
This shortfall may be considered a measure of agency costs in U.S. corporations.\(^1\) Agency costs differ across firms because of the differing extent to which costly monitoring technologies can be used to reduce shirking by management (Demsetz, 1995).\(^2\) Writing perhaps loosely, we shall sometimes refer to such costs as ‘inefficiency.’

We relate the shortfall to measures of managerial incentives, controlling for the potentially constraining effect of firm risk on the extent to which risk-averse managers can be incentivized using equity-based compensation. We find that the shortfall is smaller, the larger the chief executive officer’s stockholdings. This echoes earlier findings by Morck, Shleifer, and Vishny (1988) and McConnell and Servaes (1990) that the cross-section of firm values, as measured by Tobin’s \(Q\), is positively related to managerial stockholdings. It contrasts with later findings of no such relation by Agrawal and Knoeber (1996), Loderer and Martin (1997), Cho (1998), Himmelberg, Hubbard, and Palia (1999), Demsetz and Villalonga (2001), and Palia (2001).\(^3\) When we partition the sample, we find that the negative relation between the shortfall and managerial stockholdings is economically strongest among small firms.

One possible explanation for the discrepancy between our results and the majority of studies that find no relation between Tobin’s \(Q\) and managerial stockholdings is the endogenous nature of such holdings, for stockholdings are to a large extent set by boards. However, tests for endogeneity cannot reject the null hypothesis of no bias in our data. Alternative explanations are the larger size and more recent nature of our dataset. There was much discussion and scrutiny of CEO compensation during the 1990s, and dramatically increased importance attached to options. Perhaps these made the task of boards more difficult.

We investigate the incentive role of options. We find that the shortfall from the value-maximization benchmark is smaller, the fewer options the CEO holds. In other words, on average boards have awarded options beyond the point where the marginal cost equals the marginal benefit of doing so. This is consistent

\(^1\) Alternatively, it may measure the consumption of amenities by controlling shareholders (Demsetz, 1989).

\(^2\) A related concept is that of ‘X-efficiency’ (Leibenstein, 1966).

\(^3\) A related finding is that of Demsetz and Lehn (1985) who find no relation between accounting profit rates and ownership concentration.
with Yermack (1995) who finds little evidence of a connection between CEO option awards and a reduction in agency costs, and with Meulbroek (2001) who provides evidence of deadweight costs which reduce the benefits of awarding options to CEOs. When we again distinguish among firms of different size, we find that it is medium-sized firms that have awarded too many options. Small and large firms appear to have awarded the optimal number of options.

Options not only provide effort incentives, the convexity of their payoff function also affects choice of project risk (Lambert, Larcker, and Verrecchia, 1991). If risk-averse managers tend to choose lower-risk, lower-NPV projects over higher-risk, higher-NPV projects, boards may award options that make managers’ wealth more sensitive to risk. As noted by Guay (1999), this implies awarding options whose value increases more rapidly with risk, which in turn can be measured using the option's \textit{vega}.4 In our sample, the performance shortfall decreases in \textit{vega}, which suggests that CEOs not only hold too many options, but that their options provide insufficient risk-taking incentives.

We also find that capital market pressure in the form of takeovers or bankruptcy has no effect on firm performance (except among utilities), whereas greater product-market competition within an industry has a beneficial effect. Board size, which we include to control for the effectiveness of board monitoring, has no significant effect on performance except among medium-sized firms, where inefficiency first decreases and then increases in board size.

Do boards respond to poor performance, relative to our benchmark, by strengthening incentives? Our evidence suggests they do: it is the companies whose boards adjust incentives appropriately over time that improve their performance the most.

We proceed as follows. We present our empirical approach in Section 2. We describe the data in Section 3 and present our empirical results in Section 4. We perform a number of robustness checks, notably for

4Guay shows that \textit{vega} is positively related to companies’ investment opportunities which is consistent with boards seeking to provide incentives to invest in risky projects. Rajgopal and Shevlin (2002) find that \textit{vega} has a positive effect on future choice of project risk in the oil and gas industry.
possible endogeneity bias, in Section 5. We examine boards’ responses to poor performance in Section 6. Section 7 concludes. The Appendix details the construction of our dataset.

2 Empirical approach

2.1 Constructing a value benchmark

A firm’s value is the present value of the cash flows generated by the firm’s assets, which consist of assets in place and growth opportunities. An estimate of the firm’s value is provided by the market capitalization of its debt and equity. Tobin’s Q is the ratio of the market value of debt and equity and the replacement cost of the firm’s assets in place. If a firm operates and invests in assets that are expected to create value, then its Q will be greater than one. (The marginal q of its least productive asset, however, should equal one.) The more value created, the higher the Q.

The question whether a firm’s manager maximizes value can then be restated as follows: does the firm trade at a Q that is as high as it could be if all operating and investment decisions were made optimally? Call this benchmark Q^*. Q^* should have two desirable characteristics. It should hold constant a firm’s opportunity set and characteristics, to avoid an apples-and-oranges comparison of companies’ performance. And it should be stochastic, to allow for errors in the estimation and so prevent the benchmark from being driven by outliers.

To see how an estimate of Q^* with these characteristics can be constructed in principle, consider a set of firms, each of which has access to the same opportunity set. Clearly we would not expect all firms to be equally efficient in pursuing these opportunities, and so to trade at the same valuation: the individual managers can take different production, investment, and strategic decisions, in response to the financial and other incentives they face and on the basis of their ability, disutility of effort, and risk aversion. Some firms will therefore trade at higher valuations than others. The firms with the highest
valuations are the ones creating the most value per dollar of assets in place. Varying the opportunity set and firm characteristics, we can trace out a curve that gives the maximum Q observed in a sample for any combination of opportunity sets and firm characteristics. This curve, which we will call the frontier function, is an estimate of $Q^* = f(X)$ allowing for firm differences in X. Firms whose actual Q plots below the frontier fall short of the valuation they could achieve were they to perform as well as the frontier company whose X they share. If the shortfall $Q^* - Q$ is sufficiently large, we may call them inefficient compared to their peers.

Of course, the reason why a particular firm is on the frontier may merely be ‘good luck’, rather than superior efficiency. Conversely, ‘bad luck’ will push a firm below the frontier through no fault of its own. It is important, therefore, to view a firm’s actual performance as being the realization of a random variable. Thus, we should put less weight on extremely positive performance in estimating the frontier, since extreme observations are more likely to be generated by ‘good luck’.

2.2 Stochastic frontier analysis

How do we estimate Q^*? Note that it is in the nature of a frontier that firms can only lie on the (true) frontier or below it, but never above it. Stochastic frontier analysis (SFA) captures this asymmetry in the distribution of firms by supplementing the conventional two-sided error term used in OLS with a one-sided error term. This second term is zero for the efficient firms that achieve the highest Q, but strictly positive for those firms that are inefficient and therefore fail to achieve as high a Q as can be achieved given their opportunity sets.

Formally, $Q_i = X_i \beta + \varepsilon_i$, where $\varepsilon_i = v_i - u_i$. The two-sided error term $v_i \sim N(0, \sigma_v^2)$ denotes the

5The analysis in this section is based on Battese and Coelli (1988, 1992, 1995), Reifschneider and Stevenson (1991), and Stevenson (1980).

6Stochastic frontier analysis was pioneered by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) and is widely used in economic studies of productivity and technical efficiency. Two applications in finance are studies of banking efficiency and a recent article on pricing efficiency in the IPO market (Hunt-McCool, Koh, and Francis, 1996).
zero-mean, symmetric, iid error component that is found in conventional regression equations. It allows for estimation error in locating the frontier itself, thus preventing the frontier from being set by outliers. The one-sided error term \(u_i \geq 0 \) permits the identification of the frontier, by making possible the distinction between firms that are on the frontier \((u_i = 0) \) and firms that are strictly below the frontier \((u_i > 0) \).

\(u \) therefore corresponds to the shortfall in a firm’s actual valuation. Of course, if all firms were on the frontier, then \(u_i = 0 \) and \(Q_i = Q_i^* \) for all firms \(i \): all firms would achieve the highest feasible \(Q^* \) given their \(X \) and thus be efficient. In that case, the functions estimated by SFA and OLS would be identical.

If we have repeated observations on a set of firms over time, we can let the frontier move over time, capturing both changes in firms’ opportunity sets and the extent to which their managers maximize firm value. Moreover, we can relate individual movements to changes in the provision of incentives. Thus, if we have a panel dataset, we can potentially capture the dynamics of the relationship between managers and shareholders. Using conventional panel-data notation, we can express \(Q \) as a function of a \((1 \times k)\) set of explanatory variables \(X \), and the composite error term \(\varepsilon \):

\[
Q_{it} = X_{it} \beta + \varepsilon_{it} \tag{1}
\]

where \(\beta \) is a \((k \times 1)\) vector of unknown coefficients to be estimated, \(i = 1, ..., N \), and \(t = 1, ..., T_i \).\(^7\) The location of the frontier is allowed to shift by virtue of the time-dependence of the \(X \) variables.

In order to actually estimate \(u \), which is our primary variable of interest, we must make certain assumptions about its distribution from which we can derive a log-likelihood function to be maximized in our dataset. We assume \(u_{it} \) is obtained by truncation at zero of \(N(\mu_{it}, \sigma^2_a) \). Truncation at zero captures the non-negativity of \(u \). We further assume \(\text{cov}(u_{it}, v_{it}) = 0 \). This restricts the stochastic error \(v \) around the frontier to be independent of the firm inefficiencies \(u \). In other words, good or bad luck is assumed to

\(^7\)The number of observations per company \(T_i \) is allowed to vary across firms. The SFA model thus allows the panel to be unbalanced (see Greene, 1993).
be unrelated to systematic shortfalls from value maximization. With these restrictions, and with a further restriction on \(u_{it} \) introduced in Section 2.4, we can estimate the parameters of the model using maximum likelihood.

Once these parameters have been estimated, we can measure the degree of a firm’s inefficiency using the predictions \(\hat{u}_{it} \). We normalize these to lie between 0 and 1, by taking the ratio of a firm’s actual \(Q \) to the corresponding \(Q^* \equiv Q + u \) if it were fully efficient: \(\hat{P}E_{it} = \frac{E(Q_{it} | \hat{u}_{it}, X_{it})}{E(Q_{it} | u_{it} = 0, X_{it})} \). If firm \(i \)’s predicted efficiency is 0.85, then this implies that it achieves 85% of the performance of a comparable but fully efficient firm.

2.3 Testing \(u = 0 \)

It is immediate from the structure of the error term \(\varepsilon = v - u \) that \(u = 0 \) is a necessary and sufficient condition for value maximization: firm \(i \) maximizes its \(Q \) at time \(t \) if and only if it is on the frontier, that is, if and only if \(u_{it} = 0 \). We can test whether \(u = 0 \) on average in our sample by assessing the significance of the likelihood gain from imposing the additional one-sided error term on an OLS model. If \(u_{it} = 0 \) \(\forall i, t \) then \(\sigma^2_u = 0 \) so the likelihood function of the SFA specification will be identical to the OLS likelihood function. But if \(u_{it} > 0 \) for sufficiently many \(i \) and \(t \), then the SFA specification will lead to a likelihood gain because OLS wrongly restricts \(\sigma^2_u = 0 \). The likelihood-ratio test corresponds to testing whether the OLS and the SFA functions are identical.

2.4 Explaining shortfalls from \(Q^* \)

A rejection of the null hypothesis \(u = 0 \) naturally raises the question of what causes the shortfalls. As inefficiency is measured by the distance from the frontier \(u \), relating \(u \) to suspected causes of inefficiency can shed light on the reasons for the failure to perform efficiently and on their relative importance. This amounts to decomposing the one-sided error term \(u \) introduced in Section 2.2 into two components, an

8 Of course, \(Q^* \) is sample-specific, so we cannot estimate a global maximum.
explained component and an unexplained component:

\[u_{it} = Z_{it} \delta + w_{it} \]

(2)

\(Z_{it} \) is a \((1 \times m)\) set of variables which we will refer to as ‘incentives’, \(\delta \) is a \((m \times 1)\) vector of unknown coefficients to be estimated, and \(w_{it} \) denotes the unexplained component of \(u_{it} \). The \(u_{it} \) and their determinants \(Z_{it} \) are allowed to vary over time, accommodating changes in a firm’s position relative to the frontier over time and linking such changes to changes in the incentives given to CEOs. \(w_{it} \) is obtained by the truncation of \(N(0, \sigma^2_u) \) such that the point of truncation is \(-Z_{it}\delta\), that is \(w_{it} \geq -Z_{it}\delta \). This implies that \(\mu_{it} = Z_{it}\delta \) and ensures that \(u_{it} > 0 \).

It is possible to test how well our model explains shortfalls from the frontier and thus how appropriate and important our \(Z \) variables are. The better we are able to explain the cross-section of \(u \), the lower will be the unexplained variance \(\sigma^2_u \). A statistical test of the validity of our \(Z \) variables can therefore be based on \(\gamma = \frac{\sigma^2_u}{\sigma^2} \in [0, 1] \), where \(\sigma^2 \equiv \sigma^2_v + \sigma^2_u \). \(\gamma \) is the ratio of the unexplained error and the total error of the regression (Aigner, Lovell, and Schmidt, 1977). \(\gamma \) will be zero if our \(Z \) variables fully account for departures from the frontier.

2.5 The empirical model

2.5.1 Model selection: Partitioning the variable set

In order to estimate the model, we need to take a stand on what we consider to be an \(X \) variable that determines the location of the frontier, and what we consider to be a \(Z \) variable that explains shortfalls from the frontier. In principle, there are two ways to partition the variable set: on the basis of an econometric criterion, such as maximizing the log-likelihood, or on the basis of economic theory. We choose the latter, though we note that our results are robust to letting the data determine the ‘best’
specification. Specifically, we include among the Z variables anything that has to do with solving the agency problem between managers and shareholders. The following two sections describe our choice of X and Z variables in detail.

2.5.2 The frontier

In constructing a firm’s benchmark Q, it is clearly important to control for differences in firms’ characteristics and opportunity sets. The determinants of Q have been modeled extensively, so we base our empirical specification on results established in prior literature. The precise definitions of our variable are given in the Data Appendix and Table 1. Here, we focus on their economic meaning and the predicted signs.

- Diminishing returns suggest that average Q will fall as firms grow larger: each additional unit of capital employed will have a lower productivity than the previous. We use log sales to capture the implied inverse relation between firm size and Q. We also include log sales squared to capture possible nonlinearities in the relation.

- ‘Soft’ spending on research and development ($R&D$) and advertising (ADV), and ‘hard’ spending on capital formation ($CAPEX$) — all of which we normalize by the capital stock K — proxy for growth opportunities. $R&D$ and ADV also proxy for intangible assets. They thereby serve to control for the upward bias in Q that results from the use of the book value of total assets — which rarely measures intangible assets precisely — as the denominator of Tobin’s Q. All three variables are expected to covary positively with Q.

- The operating margin $\frac{Y}{sales}$ is a measure of profitability. It should be positively related to Q.

- $\frac{K}{sales}$ and its square control for the relative importance of tangible capital in the firm’s production technology. A priori, there are two opposing effects. On the one hand, firms whose capital is relatively

\footnote{For a discussion of the distortions in Tobin’s Q that result from the presence of intangible assets, see Section 2.1 of Demsetz and Villalonga (2001). As their discussion makes clear, ‘Q’s bag [of advantages and disadvantages] is far from empty.’}
less tangible may be subject to greater agency problems as capital providers cannot observe, monitor, and assess spending on intangibles as easily. They may therefore have lower Qs. On the other hand, and as noted above, measures of Q tend to understate the replacement cost of intangibles. This induces a negative relation between Q and the firm’s tangible capital intensity.

The preceding variables were suggested by Himmelberg et al.10 To these we add five variables: leverage, the cost of capital, industry growth forecasts, analyst following, and a dummy for regulation.

- In a Modigliani-Miller world, leverage should not affect firm value. However, if tax shields are valuable, Tobin’s Q should increase in leverage. On the other hand, leverage could proxy for difficult-to-measure intangible assets such as intellectual property, customer loyalty, or human capital. Firms that are more reliant on intangible assets are likely to have lower leverage and higher Qs. The net effect is therefore ambiguous.

- The numerator of Q is the market value of the firm, which is obtained by discounting future cash flows at the firm’s cost of capital. Thus, the higher the cost of capital R, the lower Q. To measure R, we use the industry risk premia estimated in Fama and French (1997).

- Declining industries have fewer growth opportunities and so lower Q. As a proxy for growth opportunities, we use long-term industry growth rate forecasts obtained from securities analysts covered in I/B/E/S.

- We control for the intensity of analyst following, measured as the number of analysts making growth forecasts in I/B/E/S. We expect analyst following to have a positive effect on Q (Trueman, 1996).

- Regulation may constrain a utility firm’s ability to create value, by restricting the prices the firm can charge its customers for example. Alternatively, by restricting entry into an industry, regulation

10 Himmelberg et al. suggest dealing with missing data by setting the missing values of the variable in question to zero and including a dummy which equals 1 when data are missing, and zero otherwise. This avoids having to drop firm-years where data are missing. In our sample, some values of R&D, ADV, and CAPEX are missing, so we include two (3-1) dummies. All results are robust to excluding missing observations instead.
may help maintain profitability in the industry at a level higher than would prevail if entry were free.

The net effect of regulation is therefore ambiguous.

The following equation summarizes our empirical model for the determinants of Q:

$$Q_{it} = \beta_0 + \beta_1 \ln(sales_{it}) + \beta_2 \ln(sales_{it})^2 + \beta_3 \frac{R&D_{it}}{K_{it}} + \beta_4 \frac{ADV_{it}}{K_{it}} + \beta_5 \frac{CAPEX_{it}}{K_{it}} + \beta_6 \frac{Y_{it}}{sales_{it}} + \beta_7 \frac{K_{it}}{sales_{it}} + \beta_8 \left(\frac{K_{it}}{sales_{it}} \right)^2 + \beta_9 leverage_{it} + \beta_{10} R_{it} + \beta_{11} growth_{it} + \beta_{12} analysts_{it} + \beta_{13} utility_{it} \quad (3)$$

where we have indicated the signs we expect using $+$, $-$ and $?$ above the variables. We do not include industry fixed effects, because both equity risk premia and long-term industry growth rate forecasts are defined at the industry level and so already filter industry effects.\footnote{We have repeated our empirical tests with industry fixed effects, with very similar results to those reported below.}

2.5.3 Shortfalls from Q^*

Since we have already accounted for random influences on value (such as bad luck or windfalls) via the v_{it} errors around the frontier, we assume shortfalls u are caused by conflicts of interest, which can however be mitigated via incentive schemes. Specifically, if incentives matter, we expect firms to be closer to their potential, the better designed their incentive schemes. Our set of Z or incentive variables is:
\[u_{it} = \delta Z_{it} + w_{it} \]
\[= \delta_0 + \delta_1 \text{stockholdings}_{it} + \delta_2 \text{stockholdings}^2_{it} \]
\[+ \delta_3 \text{optionholdings}_{it} + \delta_4 \text{optionholdings}^2_{it} \]
\[+ \delta_5 \text{vega}_{it} \]
\[+ \delta_6 \text{capital market pressure}_{it} \]
\[+ \delta_7 \text{product market pressure}_{it} \]
\[+ \delta_8 \text{board size}_{it} + \delta_9 \text{board size}^2_{it} \]
\[+ \delta_{10} \sigma_{it} + w_{it} \]

The first five variables are designed to capture ‘internal incentives’ that are at least in part under the board’s control.

- CEO stockholdings is the fraction of the firm the CEO owns via vested or restricted stock.

- To make options comparable to stocks in their incentive effects, we measure managerial optionholdings as the product of the option deltas and the fraction of firm equity which managers would acquire were they to exercise the options.\(^{12,13}\)

As in previous studies, we include squared terms for stock- and optionholdings to allow for nonlinearities in their relation with Tobin’s \(Q \).

\(^{12}\) See Yermack (1995) and Baker and Hall (1999) for a formal analysis.
\(^{13}\) An alternative measure of the effort incentives of options multiplies our measure by the market value of the firm’s equity. As noted by Baker and Hall (1999), ours is the proper incentive measure if managerial effort is additive, in the sense of being invariant to firm size. The second measure is appropriate if managerial effort is multiplicative and proportional to firm size. Murphy (1998) argues for the primacy of the additive measure. Our empirical results are wholly unaffected if we use the multiplicative measure instead.
In addition to providing effort incentives via equity and option awards, boards may also try to induce the manager to choose riskier projects by making his payoffs more convex. This would increase Q if the manager currently foregoes positive NPV projects due to his personal risk aversion. To capture the extent to which options influence choice of project risk we compute an option vega for each CEO-year, which measures the sensitivity of option value to a small change in volatility.14

The next two variables measure ‘external incentives’ that are not directly under the board’s control.15

- *Capital market pressure* is a combined measure of the within-industry risk of bankruptcy and takeover, both of which should act to discipline the CEO (Stulz, 1990; Scharfstein, 1988).

- *Product market pressure*, measured as the annual Herfindahl concentration index for every four-digit SIC industry, has an ambiguous effect on value a priori. On the one hand, Schmidt (1997) and others have argued there is more scope for managerial slack in less competitive markets, resulting in lower Tobin’s Qs. On the other hand, firms in less competitive markets might earn higher economic rents and thus have higher Qs.

The quality and effectiveness of board oversight likely affects managerial inefficiency and thus Q.

- *Board size* is included to control for the effectiveness of board monitoring. Yermack (1996) shows that companies with smaller boards have higher Qs, possibly because of increased free-riding (and thus reduced monitoring) as boards get larger. We include the square of board size to allow for nonlinearities. Specifically, it is possible that the relation between board size and Q is U-shaped: larger boards are prone to free-riding, but smaller boards may suffer from a lack of talent or diversity.

14Guay (1999) documents a positive relationship between vega and investment opportunities, which he interprets as “managers receiving incentives to invest in risky projects when the potential loss from underinvestment in valuable risk-increasing projects is greatest” (p. 43).

15We also investigate whether greater use of debt improves efficiency, as in Jensen’s (1986) free cash flow hypothesis, but find no significant effect.
Finally, we include a measure of idiosyncratic risk. Although not itself an incentive variable, idiosyncratic risk affects the extent to which a risk-averse manager can be incentivized via stock- and option-holdings.16 To measure idiosyncratic risk σ, we compute the daily residual standard deviation from Fama-McBeth CAPM regressions, estimated over the prior year.

\section{The data}

\subsection{Data and sources}

Our dataset is derived from the October 1998 version of Standard & Poor’s ExecuComp. ExecuComp covers the 1,500 firms in the “S&P Super Composite Index”, consisting of the 500 S&P 500, the 400 MidCap and the 600 SmallCap index firms, beginning in 1992.17 When Standard & Poor’s change the compositions of their indices, new firms are added to ExecuComp. The October 1998 version that we use covers 1,827 firms. Since being added to an index could be a sign of ‘success’, using all ExecuComp firms would over-represent ‘successful’ firms. We therefore limit our analysis to the 1,500 original (1992 panel) firms. From these, we exclude ten firms with dual CEOs and one firm for which no Compustat data were available. In common with the literature, we also exclude all financial-services companies (SIC codes 60-63), as accounting data for these are not directly comparable to those of other companies. This leaves 1,307 firms.

The panel runs from 1992 to 1997 and consists of 7,134 firm-years, 708 short of the theoretical maximum (1,307 firms \times 6 years). There are two reasons why the panel is unbalanced: attrition and missing data. 176 of the 1,307 companies delist prior to 1997, resulting in a loss of 359 firm-years (an attrition rate of 5%). Of these, 162 are taken over, ten are delisted due to violation of listing requirements, two cease trading for

16For a discussion of the relation between risk and incentives, see Aggarwal and Samwick (1999), Garen (1994), and Haubrich (1994).

17We verify that firms that drop out of the indices are retained in the dataset unless they cease to be listed, thus minimizing survivorship bias.
unknown reasons, one is declared insolvent, and one is liquidated. Given the low attrition rate, we do not expect attrition bias to be a serious problem.\footnote{A comparison of the Tobin’s Qs of the 176 takeover targets and the surviving firms confirms that there are no systematic differences in performance.} Missing data affect 349 firm-years. In the main, missing data cause companies to ‘leave’ our panel before 1997. For instance, the 10/1998 CD-ROM reports no 1997 data for 183 companies with non-December fiscal year-ends. Some of the missing firm-years, however, are at the beginning of the panel (1992 and 1993), due to systematic gaps in ExecuComp’s coverage of option and ownership information. We discuss these issues in the Data Appendix. A closer look at the companies affected suggests some nonrandomness: early firm-years are more likely to be missing for the smallest tercile of firms, mainly because smaller firms (by number of shareholders) are not required to file proxies with the SEC. However, none of the results that follow are qualitatively changed if we exclude all 1992 and 1993 firm-years, or if we exclude 1997.

We perform a wide range of data checks and manual data fills on both ExecuComp’s and Compustat’s data items (see the Data Appendix). In general, we find the accuracy of ExecuComp’s data to be extremely high, but we also find systematic lapses in ExecuComp’s coverage. For instance, ExecuComp fails to flag who is CEO in 1,785 firm-years, reports no managerial stockholdings in 289 firm-years, and lacks information about optionholdings in 317 firm-years. We handfill gaps in the data where possible.

3.2 Descriptive sample statistics

A summary of our variable definitions can be found in Table 1. The Data Appendix provides additional detail. Table 2 reports means and distributional information for our variables. The average (median) firm has a Tobin’s Q of 1.985 (1.569). Sample firms are large, with average (nominal) sales of 3.1 billion, though this is partly driven by the quartile of largest firms: the 75th percentile firm has sales of 2.7 billion and the largest (Ford Motor Company) has sales of 153.6 billion. Both $\frac{R&D}{A}$ and $\frac{ADV}{A}$ are right-skewed and have some very large positive outliers which spend more than their asset bases on research and development and
advertising. The median company reports zero R&D and ADV expenditure. The average rate of capital formation \(\frac{\text{CAPEX}}{K} \) in the sample is 23.6%. The average firm has a negative operating margin, though this is heavily influenced by the four percent of firm-years in which operating income is negative. The median operating margin of 14.5% is thus more informative. Our sample firms appear very capital-intensive, given median \(\frac{K}{\text{sales}} \) of 0.29: they use 29 cents of tangible capital to generate a dollar of sales. The average firm has 19% leverage, with a range from 0% to 99.8% (Payless Cashways, Inc., which subsequently sought Chapter 11 protection from its creditors). Cost of capital estimates range from 5.9% to 12.7% nominal, with a mean and median just below 10%. Industry growth rate forecasts average 16.6% per annum, with a range from 2.8% to 35.7%. The average company is followed by 12 securities analysts.

The lower half of Table 2 lists the incentive variables. The average CEO owns a mere 3.4% of his firm, with an even lower median of 0.4%. Not surprisingly, CEO ownership depends on firm size, averaging 6.8% in the smallest quartile and 1.1% in the largest (results not shown). Option ownership, which in the table is defined as the number of options held divided by shares outstanding, averages 1%. For the median firm, option ownership is 0.5%, higher than median CEO stock ownership. This is consistent with Murphy’s (1998) finding that CEOs’ option ownership has come to rival their direct equity ownership. However, these numbers are not directly comparable, for the incentive properties of an option are proportional to the option’s delta, which has a median value of 0.67 in our sample. (All estimates reported hereafter use the delta adjustment.) The total vega of the average CEO’s option portfolio is 12, which means that a 1% change in volatility increases the value of the average option portfolio by a factor of 0.12. For comparison, Guay reports average and median vegas for 278 CEOs in 1993 of 16.7 and 15.6, about 40% higher than our estimates. The average firm faces a 5.9% probability of delisting in a given year, our measure of capital market pressure. Just under half the firms operate in unconcentrated industries (defined by the Federal Trade Commission as a Herfindahl index value below 1,000), a quarter in moderately concentrated industries (Herfindahl values between 1,000 and 1,800), and the remaining quarter in highly concentrated industries (Herfindahl values >1,800). The average (median) board has 9.6 (9) members, ranging from a
low of 3 to a high of 22. Firm-specific risk σ, measured as daily stock return volatility, averages 2.2%, or 34% on an annualized basis.

4 Empirical results

The discussion of our empirical results is structured as follows. In this Section, we first estimate the benchmark function, Q^*, and show that firms do not maximize value in our sample. We then ask what determines the shortfall from Q^* in the cross-section of firms. In Section 5, we show that our results are robust to potential endogeneity concerns, sample partitions by size, to outliers, and to alternative variable definitions. Finally, in Section 6, we ask whether boards adjust internal incentives to improve performance over time.

4.1 Estimating the benchmark function

The frontier variables, shown in the upper half of Table 3, column (1), all have the predicted signs. The maximum-attainable Tobin’s Q decreases significantly with log sales and increases slowly with its square, with a turning point outside the range for sales in our data. It is similarly U-shaped in tangible capital-intensity $\frac{K}{\text{sales}}$ with a turning point at 22.4%. Q decreases significantly in leverage. We interpret this negative leverage effect as proxying for a positive relation between difficult-to-measure intangibles and Q and note that it points to debt tax shields being of second-order importance.\footnote{Agrawal and Knoeber (1996) also find a negative relation between leverage and Q.} Q increases in ‘soft’ and ‘hard’ expenditures on research and development and capital formation, respectively, in operating margins $\frac{Y}{\text{sales}}$, and in industry growth rate forecasts. It also increases in analyst following. Utility companies have significantly higher Qs, on average, than non-utility companies, consistent with the notion that regulation acts as a barrier to entry. The Q frontier appears to be invariant to advertising spending and to our measure of the cost of capital.
4.2 Do sample firms maximize value?

If firms maximize value, the one-sided error terms u will be zero. The Diagnostics Section of Table 3 reports a likelihood ratio test of this null hypothesis, which we comfortably reject ($p = 0.1\%$). Thus, in our sample, firms do not maximize value on average.20

How large are the shortfalls from Q^*? As explained earlier, this can be measured using the predicted values, \hat{u}_{it}, normalized to lie between 0 and 1 by taking the ratio of a firm’s actual Q to the corresponding $Q^* \equiv Q + u$ if it were fully efficient: $\hat{PE}_{it} = \frac{E(Q_{it}|\hat{u}_{it},X_{it})}{E(Q_{it}|u_{it}=0,X_{it})}$. The average predicted efficiency is 83.8\%, meaning that the average firm underperforms the frontier by around 16\%. Translated into dollars, this implies that the market value of the average firm would be $1,432$ million higher were it to move to the frontier.21 The median firm has a predicted efficiency of 84.8\%, and the inter-quartile range is 80.3\%-88.8\%.

In Table 4, Panel A, we report distributional characteristics of the predicted efficiencies by year and size. For the size partition, companies are sorted into terciles on the basis of their net sales in the first panel year. Inefficiency appears to be present in all years and among companies of all sizes.

The extent of inefficiency we estimate for the 1,307 largest listed companies in the U.S. is in line with extant stochastic frontier results for individual industries. Using a variety of output or productivity measures (rather than Tobin’s Q), Berger and Mester (1997) report average inefficiency of 20\% in the U.S. commercial banking industry; Altunba¸s, Gardener, Molyneux, and Moore (2001) report inefficiency of the same order in European banking; Anderson, Fish, Xia, and Michello (1999) report inefficiency of 12\% in the U.S. hotel industry; and Trip, Thijssen, Renkema, and Huirne (2002) report inefficiency of 16\% among Netherlands flower growers. Perhaps no less importantly, Hoffer and Payne (1997) report average inefficiency of 11\% among the teams of the National Basketball Association.

20Since the u are not zero, we expect the residuals in an OLS version of the model to be significantly right-skewed, implying that the median OLS error is negative. This is indeed the case; see col. 2 of Table 3.

21The difference between a firm’s actual Q and its frontier Q^*, multiplied by the replacement value of its assets, gives the increase in the firm’s market value were it to move to the frontier.
The widespread finding of inefficiency may indicate that inefficiency is but a statistical artefact: that is, more a reflection of SFA’s failure to identify the efficient frontier correctly than evidence of systematic departure from efficiency. To determine whether shortfalls from Q^* are indeed systematic, we investigate the time series behavior of the predicted efficiencies, $P\tilde{E}_{it}$. If the cross-section of firms’ positions relative to the frontier were random rather than systematic, there would be no reason to expect it to remain stable over time, and we would expect no correlation from year to year in firms’ predicted efficiencies. Under the alternative hypothesis of systematic inefficiency, we would expect persistence in inefficiency from year to year and possibly reversals over longer periods (as boards take action to reduce inefficiency). Table 4, Panel B shows a correlogram of the predicted efficiencies. There is clear evidence of significant positive correlation across all lags, consistent with persistence in (in-)efficiency. We are thus unlikely to be picking up random movements in inefficiency. The correlations tend to decline with longer lags. In Section 6, we will investigate whether changes in inefficiency over time are related to board actions.

4.3 What determines the shortfall?

Does the degree of inefficiency depend on the strength of managerial incentives, as captured by our Z variables in equation (4)? The Z coefficients are shown in the middle part of Table 3, listed under the heading ‘Incentive variables’. In interpreting the coefficients, recall that $Z\delta$ enters the SFA equation negatively. A negative δ therefore indicates that inefficiency u_{it} can be decreased by increasing the value of the corresponding variable Z_{it}.

Overall, our Z variables are very successful at accounting for shortfalls from Q^*: γ, which measures the relative importance of the unexplained part, w_{it}, of equation (4) and the overall error of the SFA regression, is very close to zero and not statistically significant (see col. 1).

With the exception of capital market pressure and board size, all coefficients are statistically significant. The coefficient of CEO stockholdings is negative, indicating that CEOs own too little equity: inefficiency
could be decreased by increasing their stockholdings. The coefficient of the square of CEO stockholdings is positive and highly significant, indicating concavity in the relation between stockholdings and the shortfall from the frontier. This inverse U-shaped relation between CEO ownership and \(Q \) mirrors the results of McConnell and Servaes (1990). It contrasts with Himmelberg et al. (1999) who find no relation between managerial stockholdings and \(Q \) in the ten years prior to our sample period.

To illustrate the economic magnitude of the effect in our data, we compute the change in Tobin’s \(Q \) for a one standard deviation increase from the mean of stockholdings, holding all other variables at their sample means. This increases \(Q \) from 1.985 to 2.164. Since \(Q \) gives the multiple at which a dollar of assets trades in the market, we can translate this into dollar changes in market value. The average firm has assets of $3,613 million, so each 0.01 increase in \(Q \) increases its market value by $36.1 million. Increasing CEO stockholdings by one standard deviation from the sample mean therefore increases market value by $646.7 million, all else equal.\(^{22}\)

The coefficients estimated for optionholdings and its square have the opposite signs to those estimated for stockholdings: CEOs appear to own too many options from the point of view of maximizing \(Q \). A one standard deviation increase in CEO optionholdings from the mean, for the average company, decreases Tobin’s \(Q \) from 1.985 to 1.909, equivalent to a fall in market value of $274.7 million. CEOs simultaneously own too few stocks and too many options.\(^{23}\)

Given our finding that CEOs hold too many options, do their options at least induce optimal risk-taking? The negative and significant coefficient estimated for \(vega \) suggests they do not: the companies closest to the frontier are those that have awarded options with high \(vega \)s. A one standard deviation increase in \(vega \) from the sample mean raises \(Q \) from 1.985 to 2.069, corresponding to a $303.2 million

\(^{22}\)These point estimates are meant to be crude illustrations only. Clearly, they suffer from at least two shortcomings which likely cause the economic effect to be overstated. \(i \) The estimates do not adjust for the cost of changing incentives (such as dilution when awarding restricted stock). \(ii \) All else will presumably not remain equal: as Ofek and Yermack (2000) show, changes in one incentive variable can trigger countervailing changes in another.

\(^{23}\)If we use the sum of stock- and optionholdings (adjusted for \(delta \) and thus comparable to equity) instead of the individual variables in the OLS or SFA regressions, we continue to find suboptimality: CEOs have too small a claim on their firms through the combination of stocks and options.
increase in market value for the average firm.

Capital market pressure, as measured by the probability of delisting, has a small but positive effect on inefficiency, contrary to our prediction, but is statistically insignificant.

An increase in product market competition significantly reduces inefficiency, in line with Schmidt (1997). The effect is large: firms operating in ‘unconcentrated’ industries, as defined by the Federal Trade Commission, have Tobin’s Qs that are on average 0.099 higher than firms operating in ‘highly concentrated’ industries, corresponding to a $356.5 million difference in market value. No doubt part of the difference is due to factors we have not controlled for. Still, all else equal, competition appears to have a considerable effect on performance.

Inefficiency increases in board size and decreases in its square, but neither coefficient is statistically significant. Moreover, the effect is economically small, with a one standard deviation increase in board size having almost no effect on Q.24 This finding is consistent with board size having been chosen optimally by shareholders.

Finally, inefficiency increases significantly in idiosyncratic risk, \(\sigma \). This is consistent with the prediction that idiosyncratic risk adversely affects the extent to which a risk-averse manager can be incentivized via stock- and optionholdings.

4.4 SFA vs. OLS

Table 3 also reports the results of estimating our empirical model using OLS (see col. 2). The regression has high explanatory power (the adjusted \(R^2 \) is 35.7%). Except for the intercept, the OLS and SFA coefficient estimates are very close. This is not surprising, for asymptotically, both will give the same coefficient estimates.

24 Our specification for board size differs from Yermack’s (1996) who uses the log of the number of board members rather than the level and square. Using his specification, we continue to find that inefficiency is unrelated to board size (\(t = 0.039 \)). All our other results remain qualitatively (and, largely, quantitatively) unchanged.
estimates in case all inefficiency has been explained \((\gamma = 0)\).\(^{25}\) But unlike OLS, SFA also gives an estimate of shortfalls from the value-maximization benchmark, \(Q^*\).

4.5 Utilities vs. unregulated firms

The sample contains 172 utility companies whose economic behavior may differ from that of other firms. The SFA model discussed so far controls for this by including a dummy variable for utility firms among the \(X\) variables. This may capture differences in the average \(Q\) of utilities and unregulated firms, but does not allow for potential differences in the effects of the individual \(X\) and \(Z\) variables. We therefore partition the sample into utilities (two-digit SIC codes 40, 48, and 49) and unregulated firms and estimate individual stochastic frontiers for each subsample; see cols. 3 and 4 in Table 3, respectively. (We exclude \(\frac{ADV}{K}\) from the model for utilities as utilities report no advertising expenditure."

We find no major differences in the frontier variables between the sample as a whole (col. 1) and the subsample of unregulated firms (col. 3). Comparing the subsamples of utilities (col. 4) and unregulated firms (col. 3), the signs of the frontier variables are the same, though the magnitudes of some of the coefficients differ. For instance, operating margins and spending on \(R&d\) have larger effects on \(Q\) for utilities, while \(leverage\), spending on \(CAPEX\), and analyst following have smaller effects. The negative effect of the cost of capital on \(Q\), not significant in the overall sample or among unregulated firms, is highly significant among utilities.

In both subsamples, firms fail to maximize \(Q\) on average, but the average utility has a slightly lower predicted efficiency (83.2\%) than the average unregulated firm (87.0\%), and the interquartile range is lower for utilities (78.6\%-87.8\%) than for unregulated firms (83.7\%-92.0\%). The lower predicted efficiency of utilities is perhaps not unexpected, given the restrictions on competition that often accompany regulation.

\(^{25}\)If \(\gamma > 0\), it can be shown that \(\delta_{OLS}\) will be biased, for the \(Zs\) will then correlate with the error term \(w\) (which has distribution \(N(0, \sigma_w^2)\) with upper truncation at \(-Z\delta\)). Since \(\gamma = 0\) for most of our results, this potential bias of OLS is not evident in our data.
We note that the lower predicted efficiency of utilities is not inconsistent with the positive coefficient on the utility dummy reported in Table 3. This is because the coefficient on the utility dummy is obtained from the pooled sample of unregulated firms and utilities, whereas the predicted efficiencies are obtained from the separate subsamples of unregulated firms and utilities. Utilities may on average be more profitable than unregulated firms, yet the difference in profitability between the most profitable utility and the average utility may be larger than that between their unregulated counterparts.

The coefficients estimated for the incentive variables in the subsample of unregulated firms (col. 3) are virtually identical to those in the sample as a whole (col. 1). In the subsample of utilities (col. 4), on the other hand, there are four important differences. First, while we still find that managers own too little equity, the coefficients estimated for optionholdings, its square, and vega are statistically insignificant. Second, the coefficient estimated for capital market pressure switches sign and becomes significant. In other words, an increase in the likelihood of delisting is associated with substantially better performance. To illustrate, a one standard deviation increase in this likelihood is associated with a 0.06 increase in Q, equivalent to an increase in market value of $227 million for the average utility. Third, idiosyncratic risk (as measured by sigma) has a strongly positive effect on inefficiency among unregulated firms but for utilities, the effect is negative, small, and not significant. Finally, note that the estimate of γ, though small, is statistically significant, so our set of Z variables does not fully capture all the determinants of inefficiency among utility companies.

Perhaps the preceding results can be explained as follows. First, regulation may constrain the incentives that can be offered to utility managers, especially as regards relatively new incentive schemes such as options. Second, the regulatory restrictions on product market competition among utilities may shift competition to the market for corporate control. Third, there may be little idiosyncratic risk in utilities, especially those regulated on a rate-of-return basis. Finally, one plausible omitted variable is the intensity
of regulatory pressure, which could well differ from state to state.

4.6 Summary and discussion

In locating the stochastic frontier, we find results which mirror those of earlier studies: Q first decreases and then increases with firm size and tangible capital intensity; increases in soft (R&D) and hard (capital-formation) spending, operating margins, forecasts of industry growth, and analyst following; and decreases in leverage. We can comfortably reject the null that all firms maximize value ($u = 0$). The extent of inefficiency, which implies a $1,432$ million shortfall from the average firm’s potential market value, appears first-order economically. The time series behavior of firms’ predicted efficiencies is much more consistent with systematic rather than random shortfalls from Q^*. Partitioning the predicted efficiencies by year and firm size reveals no particular clustering in inefficiency. Utilities are somewhat more prone to inefficiency than are unregulated firms.

In relating shortfalls from Q^* to the internal and external incentives CEOs face, we find that CEOs own too few stocks. This mirrors the findings of Morck, Shleifer, and Vishny (1988) and McConnell and Servaes (1990), but is in contrast to those of Agrawal and Knoeber (1996), Loderer and Martin (1997), Cho (1998), Himmelberg, Hubbard, and Palia (1999), Demsetz and Villalonga (2001), and Palia (2001). The latter series of papers differ from the former in the adjustment they make for the endogeneity of managerial stockholdings. Himmelberg et al., for example, use firm fixed effects to mitigate potential biases caused by omitted variables. If we follow this approach (not shown), we still find that CEOs own too few stocks. In other words, we find no evidence in our sample for Himmelberg et al.’s argument that unobserved but time-invariant heterogeneity causes OLS to be biased. (See Zhou, 2001, for a critique of the use

26 We note that the presence of inefficiency per se carries no implication for the optimality of compensation contracts and board structure, for some ‘inefficiency’ is bound to exist when the cost of monitoring management differs across firms (Demsetz, 1995).

27 The OLS and fixed-effects coefficient estimates for CEO stockholdings are very close and indeed not significantly different from each other in a Wald test. This is what we would expect if the covariance between CEO stockholdings and the fixed effects was zero, because the bias in OLS is proportional to that covariance: $\text{plim}_{N \to \infty} \hat{\delta}_k,\text{OLS} = \delta_k + \frac{\text{cov}(z_{it},\alpha_i)}{\sigma^2} \alpha_i$ where δ_k is the true parameter to be estimated, z_{it} is the kth element of Z (here: CEO stockholdings), and α_i is firm i’s fixed effect.
of firm fixed effects in the present context.) We perform a direct test for the endogeneity of managerial stockholdings in Section 5.2.

In addition to stockholdings, we investigate the effects of CEO optionholdings on performance. As far as we know, we are the first to do so. Our results indicate that the CEOs of unregulated firms own too many options, and that these options are insufficiently sensitive to risk. We also show that product market competition improves firm performance. A priori, its effect is ambiguous: greater competition may improve incentives but reduces supernormal profits. Our results indicate that the incentive effect dominates the rent effect. We show that the industry-adjusted probability of delisting has no discernible effect on performance for unregulated firms, but a strongly performance-increasing effect for utilities. Finally, we find that board size does not affect performance. This could either imply that board size has been chosen optimally by shareholders, or that it is irrelevant in explaining departures from the frontier. In Section 6, we will investigate the reaction of boards to inefficiency to shed further light on the role of board monitoring.

5 Robustness checks

Before we ask whether boards react to inefficiency by restructuring CEOs’ incentives, we provide a range of robustness checks. These investigate the classification of the variables as X or Z variables, possible endogeneity biases, and control for size, outliers, and alternative definitions of equity incentives.

5.1 Classification

As discussed in Section 2.5.1, the distinction between what is an frontier or input variable (X) and what is an incentive variable (Z) is, to some extent, arbitrary. Experimenting with alternative specifications, we find that neither coefficient estimates nor their significance change appreciably when we change the way we

(The expression for \(\text{plim}_{N \to \infty} \hat{\delta}_{k, OLS} \) assumes \(\text{cov}(x_{it}, z_{it}) = 0. \) In our data, the second term in the \(\text{plim} \) equals 0.009 with \(p \)-value 0.43, so it is not surprising that it does not matter whether we include fixed effects for the purpose of investigating the provision of CEO stock incentives.)
classify variables as X and Z. This is largely to be expected: we saw in Section 4.4 that the SFA estimates are very close to the OLS estimates, and there is no distinction between X and Z variables in OLS.

The classification of variables does, however, affect estimated efficiencies, because the more variables are considered inputs, the less can be ascribed to inefficiency. For instance, predicted efficiencies average 86.9% when we classify capital and product market pressure as X variables instead of Z variables. However, in this specification, we would reject the hypothesis that our set of remaining Z variables fully captures all sources of inefficiency, indicating that this is a worse model.

5.2 Endogeneity

To test for possible bias caused by the endogeneity of the incentive variables with respect to Q, we use a Durbin-Wu-Hausman test (see Davidson and MacKinnon, 1993). The test is formed by including the residuals of each endogenous right-hand-side variable, as a function of all exogenous variables, in a least-squares regression of the original model (here: of Q on all X and Z variables). We treat CEO stock- and optionholdings, and vega, as endogenous but take the external incentive variables, capital and product market pressure, to be exogenous in the sense of being outside the board’s control. We thus require three auxiliary regressions for the DWH test.

To ensure identification, the auxiliary regressions must include at least one exogenous variable each that is not also included in the original Q model. We use CEO age, dividend yields, and the variance of the per-industry delisting probability for stockholdings, optionholdings, and vega, respectively. As required, these variables correlate with the respective endogenous variables but not with Q.

The DWH test will reject the null of no endogeneity bias when the coefficients on the residuals from the auxiliary regressions are significantly different from zero in the Q model. If the tests do reject, we ought to use instrumental variables, for otherwise our estimates would be inconsistent. The test statistics,
reported in Table 3, do not indicate that endogeneity bias is a concern in our dataset.28

5.3 Size effects

In Table 5, we report the results of estimating stochastic frontiers individually in size terciles, formed by sorting firms into terciles based on their net sales in the first panel year. This reveals some interesting patterns in the frontier variables. The U-shaped relation between size and Q is reversed among large firms: Q first increases and then decreases in log sales. Among small firms, Q decreases monotonically in log sales. Spending on CAPEX increases Q only among small and medium-sized firms. Spending on advertising, which in the sample as a whole was insignificant, increases Q for the large firms and decreases Q for the medium-sized companies. Industry growth rate forecasts do not correlate with Q among medium-sized firms, and analyst following, though significant throughout, has the largest effect among small companies. Our measure of the cost of capital has the predicted negative effect on Q among large and medium-sized companies, significantly so for the latter.

As the likelihood ratio tests show, $u > 0$ in all terciles, indicating that firms fail to maximize Q in all size groups. The insignificant γ indicate that our set of incentive variables captures the main sources of inefficiency in all three terciles.

The signs for CEO ownership, optionholdings, vega, and sigma are the same as in Table 3, where we used the whole sample, though there are differences in magnitude and significance. Specifically, the lack of effort incentives in the form of stockholdings is strongest among the smallest firms. Using one standard deviation increases in stockholdings from the mean to illustrate the economic magnitude of the coefficients, Tobin’s Q increases by 0.467 among small companies, versus 0.149 among medium-sized and 0.163 among

28 Of course, this finding does not mean that the incentive variables are exogenous, only that no statistically significant bias arises from their endogeneity. As Davidson and MacKinnon (1993, p. 239) write: ‘what is being tested is not the exogeneity or endogeneity of some components of X, but rather the effect on the estimates of β of any endogeneity that might be present. The null hypothesis is that the OLS estimates $\hat{\beta}$ are consistent, not that every column of X is asymptotically independent of u.’
large companies. The corresponding implied changes in market value are $862 million, $498 million, and $1,360 million, respectively.

The result of excessive optionholdings in Table 3 appears to be concentrated among medium-sized companies, where we continue to find that inefficiency increases with optionholdings and decreases with its square. Economically, a one standard deviation increase in optionholdings from the mean would correspond to a decrease in market value of $224 million among medium-sized companies. Among the smallest and largest companies, the signs still indicate that CEOs own too many options, but the coefficients are not significantly different from zero.

Inefficiency is negatively and significantly related to vega in all size terciles. The economic magnitude is largest among the smallest companies, where a one standard deviation increase in vega would increase Q by 0.152 (equivalent to a $281 million increase in market value). For medium-sized and large companies the corresponding increase in Q would be 0.081 ($271 million) and 0.028 ($232 million), respectively.

Increases in firm-specific risk significantly increase departures from the frontier for all size classes, but the effect is much the strongest among the small firms, perhaps because larger firms benefit from internal diversification across business lines.

The signs on the remaining incentives variables vary across size groups. Capital market pressure has a negative (albeit insignificant) effect on inefficiency, except among medium-sized companies, though this is not significant. Product market competition significantly raises the efficiency of medium-sized and large companies. Among small companies, the effect is negative but not significant.

Finally, we obtain interesting results regarding board monitoring. Among medium-sized companies, inefficiency decreases in board size and increases in its square. It reaches a minimum at 11.1 board members. Economically, the effect is large: a one standard deviation increase in board size from the mean (from 9.5 to 11.9) would increase Q by 0.184 (equivalent to a $615 million increase in market value). Among the
smallest and largest firms, on the other hand, we cannot reject the hypothesis that board size is optimal.

5.4 Outliers and alternative variable definitions

We investigate the robustness of all our results with respect to outliers and measurement errors. We address the skewness in the R&D and advertising variables by taking logs and find our results unchanged. We test for sensitivity to outliers by winsorizing each explanatory variable at the 1% level in each panel year. Again, our results are unchanged. Using log board size rather than the level and square does not affect our findings: except among medium-sized companies, board size does not correlate significantly with the shortfall from Q^*. Finally, we replace our ‘additive’ CEO stock- and option ownership measures with the ‘multiplicative’ measures advocated by Baker and Hall (1999) and discussed in footnote 13. This also leaves our results unchanged.

6 Board actions to reduce inefficiency

The results in Section 4 indicate that internal incentives have a strong impact on the performance of the firms in our panel: companies are closer to Q^*, the greater CEO stockholdings, the lower CEO optionholdings, and the higher the vega of CEO option portfolios. Following Core and Guay (1999a), we investigate whether boards adjust internal incentives to improve performance over time. We exploit the time dimension of our panel, specifically the fact that inefficiency can change over time. Relating such changes to changes in internal incentives, we ask whether the improvement over time in a firm’s performance relative to Q^*—its rate of ‘catch-up’—is related to changes in its internal incentives. If it were not, we would have little cause to have faith in the economic interpretation of our frontier estimates. Put differently, our results so far suggest that the cross-section of firm inefficiencies (shortfalls from Q^*) are highly related to the strength of internal incentive schemes, but it would be disconcerting if the time series behavior of firm inefficiencies were not also related to changes over time in the strength of internal incentive schemes.
Denote by $\Delta_{\bar{t}}$ the operator that takes the difference in a variable between a company’s first panel year (t) and its last panel year (\bar{t}). Define catchup $\equiv \Delta_{\bar{t}}$ predicted efficiency as the change in each company’s location relative to the frontier, based on the predicted efficiencies tabulated in Table 4, Panel A. Catchup is bounded above by 1 (for a firm which moves from a position of 0 to the frontier) and below by −1 (for a firm which drops from the frontier to 0). Over its existence in our panel, the average (median) firm maintains its position relative to the frontier. A quarter of companies move down by 4 percentage points or more, and a quarter move up by 2.8 percentage points or more. To illustrate the economic magnitude of a one percentage point move, we compute the corresponding increase in market value given each firm’s actual Q and Q^*, and its asset base. For the average firm, a one percentage point move towards the frontier is ‘worth’ $68 million. The rates of catchup at the 25th and 75th percentiles thus imply economically significant changes in Q and hence market value.

To see if the degree of catchup is related to changes in CEOs’ internal incentives, we regress catchup on the total changes in CEO stock- and optionholdings and the vega of their options. We also control for the firm’s idiosyncratic risk using its average sigma between t and \bar{t} as strengthening a CEO’s incentives may be constrained by risk aversion. (White t-statistics are reported in italics below the coefficient estimates; all variables are expressed in percentage terms.)

\[
\text{catchup} = \begin{array}{c}
0.016 + 0.549\Delta_{\bar{t}}\text{stockholdings} \\
-1.116\Delta_{\bar{t}}\text{optionholdings} \\
+0.173\Delta_{\bar{t}}\text{vega of options} \\
-0.885\sigma \\
\end{array}
\]

\[
\text{adjusted } R^2 \quad 14.4\% \quad F - \text{test} = 21.5^{***} \quad N = 1,307
\]

As the adjusted R^2 indicates, the regression has reasonable explanatory power. The positive and significant
coefficients estimated for stockholdings and *vega* strongly support the hypothesis that internal incentives matter: it is the companies that increase these internal incentives the most that move closer to their Q^* over time.\(^{29}\) The negative and significant coefficient estimated for optionholdings suggests that companies can move closer to Q^* over time by slowing the growth in managerial optionholdings. This is consistent with our result that CEOs appear to hold too many options. To illustrate the economic magnitude of the effects, consider increasing CEO stockholdings and *vega* by one standard deviation from the mean. This would move the average company 2.9 and 1.7 percentage points closer to the frontier, respectively. A similar increase in optionholdings would result in a −1.4 percentage point movement.

Why do boards adjust incentives only gradually? One possible explanation is the cost of adjusting managerial incentives. For example, it is likely that a dramatic increase in stockholdings will be resisted by a risk-averse CEO who would thereby be required to assume much additional risk. In support of this hypothesis, we note that the coefficient estimated for *sigma* is negative and significant.

There is an alternative interpretation for our findings.\(^{30}\) It is possible that changes in CEOs’ stock- and optionholdings are determined not so much by boards seeking to adjust incentives as by CEOs buying stock in anticipation of a rise in the stock price and thus in Q, and exercising stock options following a rise in the stock price. To investigate this alternative hypothesis, we replace the explanatory variables in the catchup regression with measures that are more nearly under a board’s control. Specifically, we use the sum of *newly* awarded options (normalized by shares outstanding) between a company’s first (t) and last panel year (\bar{t}); the average *vega* of *new* option awards; and new grants of restricted stock. Unfortunately, ExecuComp only reports the value (rather than number of shares) of stock grants. A noisy measure of how much of the outstanding equity such grants represent can be obtained by dividing the value of the grant by the market value of the firm’s equity at year-end. This is a noisy measure because the two variables are

\(^{29}\)The results are unaffected if utilities are excluded, and continue to hold in each of the three size terciles. They are also unaffected if we regress *catchup* between t and \bar{t} on the changes in stock- and optionholdings and *vega* up until the penultimate panel year ($\bar{t} – 1$).

\(^{30}\)We thank the referee for suggesting this alternative interpretation.
valued on different dates.

We find that firms’ rates of *catchup* over the period decrease in the number of new options their CEOs were awarded and increase in the *vega* of new option grants. These results confirm those reported earlier, and suggest that—as far as options are concerned—board actions are related to changes in managerial inefficiency. Grants of restricted stock, on the other, do not significantly affect the rate of *catchup*. This could be because of the noisy way we measure stock grants, or because boards have not in the main used stock to alter CEOs’ incentives. The latter possibility is consistent with the alternative interpretation that the positive correlation between *catchup* and the change in CEOs’ stockholdings is driven by CEOs’ trading decisions.

7 Conclusion

In this paper, we have provided a direct test of the hypothesis that managers who are not the sole residual claimant fail to maximize firm value. Our test is based on an explicit value-maximization benchmark estimated using a stochastic frontier approach. Our empirical results can be summarized as follows. We find evidence that publicly traded U.S. companies between 1992 and 1997 are systematically inefficient on average, and that the shortfall in market value is economically significant: $1,432 million for the average company. The extent of inefficiency is related to the inadequate provision of internal incentives. The effectiveness of the incentives we consider depends on company size and, to a lesser degree, industry. Overall, CEOs own too little stock, too many options, and their options are insufficiently sensitive to risk. Greater product market competition tends to improve performance, especially among larger companies. For utilities, the level of option incentives appears to be optimal while equity incentives are not. Greater capital and product market pressure improves utility performance. Board size, generally, has no effect on performance.
Given these findings, we asked whether boards respond to inefficiency by subsequently redesigning managerial incentives. The evidence suggests that they do: it is the companies whose incentives are strengthened the most that over time improve their performance the most.

The picture that emerges is one where a substantial fraction of companies operates under suboptimal incentives at any given point in time, but where boards also adjust incentives dynamically, perhaps as they update their beliefs about the CEO’s risk tolerance, ability, or cost of effort. Whether this picture should be viewed as evidence of serious disequilibrium, however, depends on the adjustment costs of changing incentives. If a series of small adjustments dominates a drastic and rapid change in cost terms, boards may in fact be optimizing. We believe the question of costly adjustment warrants further research.
8 Data Appendix

8.1 Variable definitions

A summary of our variable definitions can be found in Table 1. With the exception of managerial ownership, our definitions follow those of Himmelberg et al. very closely. In what follows, we detail our measures of managerial ownership, Tobin’s Q and the variables not used by Himmelberg et al.

Managerial ownership. Himmelberg et al. compute managerial ownership as the sum of the equity stakes of all officers whose holdings are disclosed in annual proxy statements. In contrast, we focus on the chief executive officer. We prefer the narrower focus, because the number of officers listed in a proxy often changes from year-to-year,\(^\text{31}\) resulting in possibly spurious changes in aggregate managerial stockholdings. For instance, Bear Sterns’ aggregate managerial ownership dropped from 8.4% in 1994 to 4.9% in 1997 simply due to a fall in the number of officers listed in the proxy, from 7 to 5. Over the same time, Bear Sterns’ CEO increased his ownership slightly, from 3% to 3.2%. We recognize nonetheless that our narrower focus may entail a cost, especially where corporate performance depends on team effort. Our results are robust to adopting Himmelberg et al.’s broader focus.

Tobin’s Q. We measure Tobin’s Q as the sum of the market value of equity, the liquidation value of preferred stock, and the book value of total liabilities, divided by the book value of assets. For 14 firm-years, Compustat does not report total liabilities, so we use the book values of short-term, long-term, and convertible debt instead. Our measure of Tobin’s Q, which we borrow from Himmelberg et al., is an approximation to the textbook definition which would use market values rather than book values of debt in the numerator and the replacement cost rather than historic cost value of the assets in the denominator. Chung and Pruitt (1994) show that our simple Q approximates a Q based on replacement costs extremely well, with a correlation coefficient between the two in excess of 97%.

\(^{31}\)Only 123 of the 1,307 sample companies report a constant number of officers in every panel year.
R. Fama and French (1997) argue strongly against measuring the cost of capital at the firm level due to the high degree of statistical noise in β estimates and instead provide various estimates of industry risk premia \(\beta_j[R_M - R_f] \) for \(j = 1, \ldots, 48 \) industries defined at the four-digit SIC level. After assigning our firms to Fama and French’s 48 industries, we compute time-varying industry costs of capital

\[
R_{jt} = R_{f,t} + \beta_j[R_M - R_f],
\]

using Fama and French’s one-factor model estimates over the five years ending December 1994 (taken from their Table 7, pp. 172-173). \(R_{f,t} \) is the annualized nominal Fama-Bliss three-month return from the CRSP tapes, estimated in each firm’s fiscal year-end month. Note that for each industry, the Fama-French risk premium is constant across panel years, but that our cost of capital measure varies over time due to variation in the riskfree rate.

Growth forecasts. We use security analysts’ long-term growth forecasts as reported in I/B/E/S which we aggregate by industry. Specifically, for every month between June 1992 and August 1998 (the earliest and latest fiscal year-end months in our sample), we collect the median of all long-term growth forecasts made about a particular company that month. We then compute the average of the median forecasts across all firms in a particular industry, using I/B/E/S’s industry classifications. (I/B/E/S assigns every firm to one of about 100 industries. Firms whose business focus changes are subsequently reassigned to a new industry, without changing their historic industry assignment.) For a sample firm whose \(Q \) we observe at the end of December 199X, the relevant industry growth forecast is the average of the median long-term forecasts in that month in its I/B/E/S industry group.

Analyst following. We measure the intensity of security analyst following as the maximum of the number of analysts reported in I/B/E/S as giving either a 1-3 year or long-term growth forecast for a given sample firm in or before its fiscal year-end month.

CEO optionholdings. To measure the effort and risk properties of a CEO’s optionholdings, we need to estimate option delta and vega. Using the Black-Scholes (1973) model as modified by Merton (1973) to
incorporate dividend payouts, the *delta* and *vega* of an option equal\(^{32}\)

\[
delta = \frac{\partial \text{option value}}{\partial \text{stock price}} = e^{-dT} N(Z)
\]

and

\[
\text{vega} = \frac{\partial \text{option value}}{\partial \text{stock volatility}} = e^{-dT} N'(Z) S \sqrt{T}
\]

where \(d\) is \(\ln(1+\text{expected dividend yield})\), \(S\) is the fiscal year-end share price, \(T\) is the remaining time to maturity, \(N\) and \(N'\) are the cumulative normal and the normal density functions, respectively, and \(Z\) equals \(\frac{\ln(S/X) + T(r-d) + \frac{1}{2} \sigma^2)}{\sigma \sqrt{T}}\), where \(X\) is the strike price, \(r\) is \(\ln(1+\text{riskfree rate})\), and \(\sigma^2\) is the stock return volatility. We use as the expected dividend yield the previous year’s actual dividend yield. The stock return volatility is estimated over the 250 trading days preceding the fiscal year in question, using daily CRSP returns. In 72 firm-years, we are forced to use the concurrent (as opposed to preceding) year’s volatility estimate due to lack of prior trading history in CRSP. To compute *delta* and *vega* for individual CEOs, it is necessary to reconstruct their option portfolios. This is a labor-intensive task whose details are discussed in the next sub-section. The *vega* defined above needs to be adjusted for scale. To see why, consider a CEO holding one option with a high *vega* and another CEO holding a million options with an intermediate *vega*. Whose incentives are greater? Clearly those of the latter CEO. To capture this, we multiply *vega* by the dollar value of the CEO’s options.

Capital market pressure. Following Agrawal and Knoeber (1998), we estimate this as the probability of delisting in each firm’s two-digit SIC industry in a given panel-year. Specifically, for a sample company whose \(Q\) we observe at the end of December 199X, the probability of delisting equals the fraction of all CRSP-listed companies in its two-digit SIC industry which were delisted between January and December

\(^{32}\)Like previous authors, we note that the Black-Scholes assumptions, especially concerning optimal exercise, are probably violated due to managerial risk aversion and non-transferability. For suitable modifications, see Carpenter (1998).
199X due to merger, bankruptcy, violation of exchange requirements etc. We do not attempt to distinguish between ‘involuntary’ and ‘voluntary’ delistings as we do not know the motivation behind the mergers and takeovers. The justification for estimating industry-specific measures of capital market pressure is the finding of Palepu (1986) and Mitchell and Mulherin (1996) that takeover activity has a strong industry component.

Product market pressure. To measure product market pressure, we compute Herfindahl concentration indices for each four-digit SIC industry and panel year. The Herfindahl index is defined as the sum of squared market shares of each company in an industry in a given year. We compute market shares using net-sales figures for the universe of Compustat firms in 1992-1997.

Board size in year t is measured as the number of directors voted onto the board of directors at the annual general meeting at the beginning of year t, as reported in that year’s proxy. We ignore subsequent (within-year) changes in board size due to death, resignation, or unscheduled appointments of new directors.

8.2 Managerial option portfolios

To compute option deltas and vegas, we need to reconstruct each CEO’s option portfolio for every panel year. For options awarded during our observation period 1992-1997 (which we will refer to as ‘newly-awarded options’), we know all necessary information: the number of options awarded, the maturity, and the strike price. For options already held at the beginning of our observation period (‘old options’), we only know the number of options held, but not their strike prices or maturities. One solution, employed

33With a few exceptions: i) For 32 option awards, ExecuComp fails to report time to maturity. Hall and Liebman (1998) report that most options expire after ten years. Assuming that options are awarded half-way through the fiscal year gives a remaining time to maturity of 9.5 years at fiscal year-end. ii) For ten options, ExecuComp reports negative remaining times to maturity, as of the fiscal year-end. We set these times to maturity to zero. iii) For eight option awards, ExecuComp fails to report a strike price. We handfill the missing information from proxy statements.

34With a large number of exceptions: in about 300 firm-years, ExecuComp reports no option information at all. We reconstruct option holdings in these years using option holdings at the next year-end, adjusted for new awards, option exercises, and stock splits during the next year. This only works where the CEO is the same in both years. Where this is not the case, we go back to proxy statements. Note that our procedure will miss options which have expired out-of-the-money. To assess the extent of this potential problem, we spot-check one in five of the corrections we make, finding virtually no errors.
by Guay (1999), is to create an option history using each company’s ten previous proxy statements — a little over 13,000, in our case! A less labor-intensive alternative is to impute the strike prices of old options from the information available in ExecuComp, and to make assumptions about maturities. Specifically, proxies since October 1992 are required to report each executive’s total number of options held and their intrinsic value (fiscal year-end share price minus strike price, multiplied by the number of in-the-money options). From this, we can infer the average strike price of old options as

\[X = S - \frac{\text{intrinsic value}}{\text{number of old options}}. \]

This will be exact as long as all old options are in-the-money. Since we do not know what fractions of options were in-the-money, we investigate all apparently deep in-the-money \((S_X < .5) \) or out-of-the-money options \((S_X > .5) \). Largely, our imputed strikes turn out to be correct, reflecting for instance options awarded before a company’s IPO, which often turn out to be deep-in-the-money later on. Missing or negative imputed strike values are replaced, as in Guay (1999), by the average of the previous fiscal year’s first and last share price. Regarding maturities, we partly rely on definitive information from the proxies we look up anyway, and partly assume old options have an average of five years to run. We follow the five-year rule unless the CEO continues to hold the old options for more than five subsequent years in a panel, in which case we increase the assumed time to maturity by one or more years as necessary.

Armed with the imputed strikes and assumed maturities of the old options, and the actual strikes and maturities of the newly-awarded options, we compute total option deltas and total option vegas for every CEO-year as follows: for every year, we compute the vega and delta of all old options still held, and of each individual option award since the beginning of the panel. We then compute the total vega and total delta as the weighted average of the vegas and deltas of the old optionholdings and the new option awards, using the number of options in each as weights. The number of options changes over time as options are

35 In 76 cases, CEOs do hold options but ExecuComp fails to report their intrinsic value. We are able to handfill 58 of these using proxy statements.

36 Core and Guay (1999b) propose a similar solution to the problem of unobserved option portfolios and find that it is near-100% accurate compared to the more laborious full-history approach.

37 That is, we treat old options as one award, with one (average) strike price and one time to maturity, whereas for newly awarded options, we consider the individual strikes and maturities of each award. Given the non-linear nature of the Black-Scholes formula, the vega of an ‘average’ of options does not equal the average vega of the individual options. Therefore, our treatment of the old options is approximate, whereas our treatment of the newly-awarded options is exact.
exercised, but proxies do not disclose which particular options were exercised. Therefore, we assume (as do Hall and Liebman, 1998) that the oldest options are always exercised first.

8.3 Data integrity

The following remarks refer to the complete set of 1,500 S&P companies, that is before we exclude financial services companies from the sample.

8.3.1 Identifying CEOs

ExecuComp fails to flag who is CEO in 1,785 years, mostly in the earlier years (980 CEOs in 1992, 472 in 1993, 166 in 1994, 117 in 1995, and 4 in 1997). We use proxy statements, 10-Ks, the Forbes CEO database, and news reports to identify incumbent CEOs in all the missing years. We also compare ExecuComp’s CEO flag against ExecuComp’s information about the dates at which executives assumed (and left) their positions. In total, we check 4,324 CEO-years. This identifies 50 cases where ExecuComp flags the wrong person as the CEO, and 756 cases of mid-year CEO changes, where ExecuComp flags the individual who is CEO at year-end, as opposed to the individual who was CEO for the greatest part of the fiscal year. We correct all these cases. We also find that ExecuComp misses 44 instances where two individuals are co-CEOs.

8.3.2 CEO age

ExecuComp provides age information for only 1,123 of the 2,052 CEOs in the sample, so we hand-gather missing information using proxies, the Forbes CEO database, various S&P directories, regulatory filings accessed via EDGAR, and other sources.
8.3.3 CEO stockholdings

ExecuComp fails to report managerial stockholdings for 289 firm-years. Typically, this affects a CEO’s first panel year, mostly in 1992. We try to find the relevant proxies in Disclosure and are successful in 212 cases; the remaining 77 firm-years have to be dropped.

To guard against reporting errors, we investigate all 158 large (one order of magnitude) year-on-year changes in a CEO’s percentage equity stake. The (rare) errors we find ExecuComp making tend to stem from inconsistent treatment of beneficial ownership. For example, the reported ownership of the CEO of Fedders Corp dropped from circa 10% to 0.01% simply due to ExecuComp’s failure to consistently count two additional classes of shares. We also investigate all ‘extreme’ values for CEO stockholdings (>50% of equity) and correct one data error.

8.3.4 CEO optionholdings

Corresponding to the problem of missing CEO stockholding information, 317 firm-years lack information on the CEO’s optionholdings. We handfill the missing optionholding information for 252 of the 317 firm-years. We also find 79 option awards that ExecuComp misses, and are able to resolve some other internal inconsistencies in ExecuComp’s data (such as four reports of option exercises where a CEO allegedly held no options).

We investigate all ‘unusual’ option information in ExecuComp. For instance, options are typically awarded at or near the current market share price, so we investigate the fifteen options with unusually low reported strike prices, relative to the fiscal year-end share price. For ten of these, ExecuComp’s information is correct. For the remaining five, the companies awarded options not on their own stock, but on the stock of unlisted subsidiaries. Since we cannot compute option delta and vega in the absence of share price information, we set these five awards to missing.
8.3.5 Compustat data

With respect to the Compustat data with which we measure Tobin’s Q and other firm-specific variables, we check all missing or zero values of sales, book value of assets and total liabilities, all missing values for research and development, advertising, and capital expenditures, and all cases of unusually large (> 3) or small (< 0.5) Tobin’s Qs. We are able to handfill a small number of missing/zero Compustat values and to resolve all extreme Tobin’s Qs, using 10-Ks and information gathered from Nexis news sources.

Research and development ($R&D$), advertising (ADV), and capital expenditures ($CAPEX$) are normalized by “net property, plant and equipment” (K). Where this is missing or zero in Compustat, we use the difference between the book value of assets and intangibles. There are about 140 such cases.
9 References

Hunt-McCool, J., Koh, S.C., Francis, B., 1996. Testing for deliberate underpricing in the IPO premar-

Trueman, B., 1996. The impact of analyst following on stock prices and the implications for firms’

Table 1.
Variable definitions.

<table>
<thead>
<tr>
<th>Firm characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s Q</td>
<td>The ratio of the value of the firm divided by the replacement value of assets. Similar to Himmelberg et al., for firm value we use (market value of common equity + liquidation value of preferred equity + book value of total liabilities), and for replacement value of assets we use book value of total assets.</td>
</tr>
<tr>
<td>net sales</td>
<td>Net sales as reported in ExecuComp, Compustat or a 10-K, expressed in $m. Usually logged. Used to measure firm size.</td>
</tr>
<tr>
<td>R&D / K</td>
<td>The ratio of research and development expenditures to the stock of property, plant and equipment (K), used to measure the role of ‘R&D capital’ relative to other non-fixed assets.</td>
</tr>
<tr>
<td>ADV / K</td>
<td>The ratio of advertising expenditures to K, used to measure the role of ‘advertising capital’ relative to other non-fixed assets.</td>
</tr>
<tr>
<td>CAPEX / K</td>
<td>The ratio of capital expenditures to K.</td>
</tr>
<tr>
<td>Y / Sales</td>
<td>Operating margin = ratio of operating income before depreciation to sales. Proxies for market power and measures the gross cash flows available from operations.</td>
</tr>
<tr>
<td>K / Sales</td>
<td>The ratio of tangible long-term assets (property, plant and equipment) to sales.</td>
</tr>
<tr>
<td>cost of capital</td>
<td>Estimated at the four-digit industry (not firm) level, using the sum of the Fama-French (1997) estimates of industry risk premia and the Fama-Bliss three-month risk-free rates (from CRSP) prevailing at each company’s fiscal year-end. Expressed in per cent.</td>
</tr>
<tr>
<td>industry growth forecasts</td>
<td>Analyst forecasts of long-term industry growth rates. Constructed bottom-up as follows. For each firm covered in I/B/E/S, we collect the median long-term growth rate forecast for every month in our sample. We then use I/B/E/S’s industry classification to compute an average growth rate for each industry in every month and assign our sample firms to I/B/E/S’s industries. A sample firm’s industry growth rate is the average of the I/B/E/S-industry median per-firm long-term growth forecasts in its fiscal-year end month. Expressed in per cent.</td>
</tr>
<tr>
<td>analyst following</td>
<td>= number of analysts following the stock in each fiscal year. Computed as the maximum of the number of analysts reported in I/B/E/S as giving either a one-year, two-year, three-year or long-term forecast in or before its fiscal year-end month.</td>
</tr>
<tr>
<td>utility</td>
<td>A dummy equal to one if the company operates in two-digit SIC industries 40, 48, or 49.</td>
</tr>
<tr>
<td>dummy R&D / K</td>
<td>A dummy variable equal to one if the data required to estimate R&D / K is missing, and zero otherwise.</td>
</tr>
<tr>
<td>dummy ADV / K</td>
<td>A dummy variable equal to one if the data required to estimate ADV / K is missing, and zero otherwise.</td>
</tr>
<tr>
<td>Incentive variables</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CEO stockholdings</td>
<td>CEO’s common stockholdings as a fraction of common stock outstanding, in per cent. Includes beneficial ownership and restricted stock.</td>
</tr>
<tr>
<td>CEO optionholdings</td>
<td>CEO’s optionholdings as a fraction of common stock outstanding, in per cent.</td>
</tr>
<tr>
<td>total delta</td>
<td>The partial derivative of Black-Scholes call option value, adjusted for dividends, with respect to the price of the underlying stock.</td>
</tr>
<tr>
<td>vega of options</td>
<td>The partial derivative of Black-Scholes call option value, adjusted for dividends, with respect to the volatility of the underlying stock. Volatility is measured as the annualized standard deviation of daily stock price returns, estimated over the 250 trading days preceding the fiscal year in question. In the regressions, we use vega times the dollar value of CEO wealth held in options.</td>
</tr>
<tr>
<td>capital market pressure</td>
<td>= unconditional (Pr(\text{delisting})), the probability of delisting in each firm’s SIC-2 industry in a given panel-year. For each SIC-2 industry and for each panel year, we compute the fraction of all CRSP-listed companies that are delisted due to merger, bankruptcy, violation of exchange requirements etc, capturing all involuntary and voluntary delistings. This measure is unconditional in the sense that we do not condition the probability of delisting on firm characteristics such as size or prior performance. Expressed in per cent.</td>
</tr>
<tr>
<td>product market pressure</td>
<td>= SIC-4 Herfindahl index, computed as the sum of squared market shares (in %) of each company in an industry, here SIC-4, in a given year. Computed using net sales-market shares for the universe of Compustat firms in 1992-1997.</td>
</tr>
<tr>
<td>board size</td>
<td>= the number of directors voted onto the board, as per the proxy for that year.</td>
</tr>
<tr>
<td>sigma</td>
<td>The daily Fama-McBeth CAPM residual standard deviation, estimated over the previous year (in %, not annualized). Used to measure firm-specific risk.</td>
</tr>
</tbody>
</table>
Table 2. Descriptive sample statistics.
For variable definitions see Table 1.

<table>
<thead>
<tr>
<th>Firm characteristics</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s Q</td>
<td>1.985</td>
<td>1.292</td>
<td>0.229</td>
<td>1.237</td>
<td>1.569</td>
<td>2.216</td>
<td>16.340</td>
</tr>
<tr>
<td>net sales (Sm)</td>
<td>3,137</td>
<td>8,158</td>
<td>0</td>
<td>328</td>
<td>890</td>
<td>2,721</td>
<td>153,627</td>
</tr>
<tr>
<td>R&D / K</td>
<td>0.206</td>
<td>0.786</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.132</td>
<td>33.516</td>
</tr>
<tr>
<td>ADV / K</td>
<td>0.081</td>
<td>0.480</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.018</td>
<td>19.490</td>
</tr>
<tr>
<td>CAPEX / K</td>
<td>0.236</td>
<td>0.160</td>
<td>0</td>
<td>0.129</td>
<td>0.196</td>
<td>0.302</td>
<td>1.204</td>
</tr>
<tr>
<td>Y / Sales</td>
<td>-0.005</td>
<td>4.262</td>
<td>-307.314</td>
<td>0.090</td>
<td>0.145</td>
<td>0.222</td>
<td>0.823</td>
</tr>
<tr>
<td>K / Sales</td>
<td>0.602</td>
<td>1.140</td>
<td>0</td>
<td>0.153</td>
<td>0.285</td>
<td>0.656</td>
<td>54.823</td>
</tr>
<tr>
<td>leverage (%)</td>
<td>19.39</td>
<td>18.46</td>
<td>0</td>
<td>3.28</td>
<td>14.76</td>
<td>30.96</td>
<td>99.76</td>
</tr>
<tr>
<td>analyst following</td>
<td>11.9</td>
<td>8.4</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>17</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incentive variables</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of equity owned via stocks</td>
<td>3.42</td>
<td>7.30</td>
<td>0</td>
<td>0.09</td>
<td>0.43</td>
<td>2.61</td>
<td>80.06</td>
</tr>
<tr>
<td>% of equity ‘owned’ via options</td>
<td>1.00</td>
<td>1.49</td>
<td>0</td>
<td>0.14</td>
<td>0.52</td>
<td>1.31</td>
<td>25.76</td>
</tr>
<tr>
<td>total delta of options</td>
<td>0.67</td>
<td>0.30</td>
<td>0</td>
<td>0.57</td>
<td>0.77</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>total vega of options</td>
<td>11.58</td>
<td>11.53</td>
<td>0</td>
<td>4.00</td>
<td>9.49</td>
<td>16.44</td>
<td>356.34</td>
</tr>
<tr>
<td>SIC-2 Pr(delisting) (%)</td>
<td>5.85</td>
<td>3.11</td>
<td>0</td>
<td>3.95</td>
<td>5.57</td>
<td>7.28</td>
<td>31.25</td>
</tr>
<tr>
<td>SIC-4 Herfindahl index</td>
<td>1,444.0</td>
<td>1,306.3</td>
<td>224.9</td>
<td>594.3</td>
<td>1,067.0</td>
<td>1,812.1</td>
<td>10,000</td>
</tr>
<tr>
<td>board size</td>
<td>9.64</td>
<td>2.97</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>sigma (%)</td>
<td>2.212</td>
<td>1.064</td>
<td>0.440</td>
<td>1.430</td>
<td>1.960</td>
<td>2.780</td>
<td>13.990</td>
</tr>
</tbody>
</table>
Estimating the valuation benchmark and testing for value maximization.

Columns (1), (3), and (4) present stochastic frontier models estimated using maximum likelihood. The model in column (2) is estimated using ordinary least-squares. The dependent variable in all models is Tobin’s Q. Analyst following is the natural log of one plus the number of analysts following the stock. The Herfindahl index is normalized to have a maximum of 1.0 = monopoly. Firm-level volatility σ is expressed in percent. The models also include two dummies taking the value one if data is missing for R&D/K or ADV/K, respectively. The coefficients are generally not significant, and are not reported. For all other variable definitions see Table 1. The Durbin-Wu-Hausman (DWH) endogeneity tests are estimated by including in regression (2) the residuals of auxiliary regressions of the potentially endogenous variable on all the exogenous variables in the system. To ensure the auxiliary regressions are identified, we include the following variables: CEO age (in the auxiliary regression for stockholdings), dividend yield (for optionholdings), and the variance of the per-industry delisting probability (for vega). Each of these correlate with the potentially endogenous variable but not with Q. In columns (3) and (4), companies are sorted into two groups: utilities (two-digit SIC codes 40, 48, 49), and unregulated industries. All SFA diagnostics are as defined in Section 2. One, two and three asterisks indicate significance at $p<5\%$, $p<1\%$, and $p<0.1\%$, respectively.
Table 3.
Estimating the valuation benchmark and testing for value maximization.
(Continued)

<table>
<thead>
<tr>
<th>Frontier variables</th>
<th>Whole sample</th>
<th>Unregulated</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Col. 1: SFA</td>
<td>Col. 2: OLS</td>
<td>Col. 3: SFA</td>
</tr>
<tr>
<td>Constant</td>
<td>2.793</td>
<td>2.724</td>
<td>2.644</td>
</tr>
<tr>
<td>ln(sales)</td>
<td>-0.311</td>
<td>-0.316</td>
<td>-0.314</td>
</tr>
<tr>
<td>ln(sales)^2</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>R&D / K</td>
<td>0.121</td>
<td>0.123</td>
<td>0.105</td>
</tr>
<tr>
<td>ADV / K</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.013</td>
</tr>
<tr>
<td>CAPEX / K</td>
<td>1.227</td>
<td>1.231</td>
<td>1.206</td>
</tr>
<tr>
<td>Y / Sales</td>
<td>0.012</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>K / Sales</td>
<td>-0.118</td>
<td>-0.119</td>
<td>-0.146</td>
</tr>
<tr>
<td>ln(sales)^2</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Cost of capital</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>Industry growth forecasts</td>
<td>0.031</td>
<td>0.032</td>
<td>0.039</td>
</tr>
<tr>
<td>Analyst following</td>
<td>0.365</td>
<td>0.368</td>
<td>0.373</td>
</tr>
<tr>
<td>Utility dummy</td>
<td>0.129</td>
<td>0.126</td>
<td>0.126</td>
</tr>
</tbody>
</table>

Incentive variables (SFA coefficients measure distance from frontier, so signs are reversed relative to OLS)

<table>
<thead>
<tr>
<th>Incentive variables</th>
<th>Whole sample</th>
<th>Unregulated</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Col. 1: SFA</td>
<td>Col. 2: OLS</td>
<td>Col. 3: SFA</td>
</tr>
<tr>
<td>Constant</td>
<td>0.082</td>
<td>0.104</td>
<td>0.104</td>
</tr>
<tr>
<td>CEO stockholdings</td>
<td>-0.027</td>
<td>-0.033</td>
<td>-0.033</td>
</tr>
<tr>
<td>(CEO stockholdings)^2</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>CEO optionholdings</td>
<td>0.065</td>
<td>0.059</td>
<td>0.059</td>
</tr>
<tr>
<td>(CEO optionholdings)^2</td>
<td>-0.004</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td>Vega of options</td>
<td>-0.012</td>
<td>-0.010</td>
<td>-0.010</td>
</tr>
<tr>
<td>Capital market pressure</td>
<td>0.098</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Product market pressure</td>
<td>0.397</td>
<td>0.449</td>
<td>0.449</td>
</tr>
<tr>
<td>Board size</td>
<td>0.026</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Board size^2</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.005</td>
<td>0.006</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Diagnostics

Likelihood ratio test of u=0 (X^2)	154.0***	147.7***	72.4***
Mean predicted u (as % of Q)	83.8	87.0	83.2
σ^2=σ_u^2+σ_v^2	1.070 56.084	1.209 71.998	0.083 20.904
γ=σ_u^2/σ^2	0.000 0.385	0.00003 1.655	0.005 7.056

Adjusted R^2 (%) | 35.7 |
All coeff. = 0 (F-test) | 118.3*** |
Skewness in residuals (p-value) | <0.001 |

DWH endogeneity tests

CEO stockholdings (F)	0.96
CEO optionholdings (F)	0.06
vega of options (F)	0.58
joint (F-test)	1.70

No. firm-years | 7,134 | 7,134 | 6,188 | 946 |
No. firms | 1,307 | 1,307 | 1,135 | 172 |
Max no. panel years | 6 | 6 | 6 |

Diagnostics

<table>
<thead>
<tr>
<th>Diagnostics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood ratio test of u=0 (X^2)</td>
<td>154.0***</td>
<td>147.7***</td>
<td>72.4***</td>
</tr>
<tr>
<td>Mean predicted u (as % of Q)</td>
<td>83.8</td>
<td>87.0</td>
<td>83.2</td>
</tr>
<tr>
<td>σ^2=σ_u^2+σ_v^2</td>
<td>1.070 56.084</td>
<td>1.209 71.998</td>
<td>0.083 20.904</td>
</tr>
<tr>
<td>γ=σ_u^2/σ^2</td>
<td>0.000 0.385</td>
<td>0.00003 1.655</td>
<td>0.005 7.056</td>
</tr>
</tbody>
</table>

Adjusted R^2 (%) | 35.7 |
All coeff. = 0 (F-test) | 118.3*** |
Skewness in residuals (p-value) | <0.001 |
Table 4. Panel A.
Predicted efficiencies by empirical specification and sample characteristics.
Predicted efficiencies by year and size are derived by partitioning the cross-section of predicted efficiencies for
the sample as a whole from Table 3, col. 1. Predicted efficiencies are expressed in %. For the size partition,
companies are sorted into terciles on the basis of their net sales in the first panel year.

<table>
<thead>
<tr>
<th></th>
<th>Nobs</th>
<th>mean</th>
<th>stdev</th>
<th>min</th>
<th>Q1</th>
<th>median</th>
<th>Q3</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>All firms</td>
<td>7,134</td>
<td>83.8</td>
<td>9.6</td>
<td>2.1</td>
<td>80.3</td>
<td>84.8</td>
<td>88.8</td>
<td>100.0</td>
</tr>
<tr>
<td>By year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1,170</td>
<td>83.8</td>
<td>10.0</td>
<td>19.2</td>
<td>79.8</td>
<td>84.7</td>
<td>89.2</td>
<td>100.0</td>
</tr>
<tr>
<td>1993</td>
<td>1,299</td>
<td>84.5</td>
<td>8.9</td>
<td>14.7</td>
<td>81.1</td>
<td>85.2</td>
<td>89.3</td>
<td>100.0</td>
</tr>
<tr>
<td>1994</td>
<td>1,280</td>
<td>83.7</td>
<td>9.4</td>
<td>7.1</td>
<td>80.4</td>
<td>84.8</td>
<td>88.5</td>
<td>100.0</td>
</tr>
<tr>
<td>1995</td>
<td>1,237</td>
<td>83.7</td>
<td>9.5</td>
<td>22.4</td>
<td>80.1</td>
<td>84.8</td>
<td>88.6</td>
<td>100.0</td>
</tr>
<tr>
<td>1996</td>
<td>1,198</td>
<td>83.4</td>
<td>10.3</td>
<td>2.1</td>
<td>80.1</td>
<td>84.8</td>
<td>88.5</td>
<td>100.0</td>
</tr>
<tr>
<td>1997</td>
<td>950</td>
<td>83.9</td>
<td>9.4</td>
<td>11.0</td>
<td>80.4</td>
<td>84.7</td>
<td>88.6</td>
<td>100.0</td>
</tr>
<tr>
<td>By size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>2,286</td>
<td>85.6</td>
<td>8.6</td>
<td>2.1</td>
<td>81.9</td>
<td>86.1</td>
<td>90.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Medium</td>
<td>2,390</td>
<td>82.4</td>
<td>10.2</td>
<td>14.4</td>
<td>79.3</td>
<td>83.9</td>
<td>87.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Large</td>
<td>2,458</td>
<td>83.7</td>
<td>9.6</td>
<td>7.1</td>
<td>80.0</td>
<td>84.6</td>
<td>88.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4. Panel B.
Correlogram of predicted efficiencies.
Pairwise correlations are expressed in percent. One, two and three asterisks indicate significance at
$p<5\%$, $p<1\%$, and $p<0.1\%$, respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>82.5*</td>
<td>61.0***</td>
<td>59.9***</td>
<td>20.9***</td>
<td>54.3***</td>
</tr>
<tr>
<td>1996</td>
<td>71.1*</td>
<td>66.0***</td>
<td>27.9***</td>
<td>55.2***</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>84.8*</td>
<td>35.9***</td>
<td>65.7***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>41.5*</td>
<td>78.5***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>88.5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.
Stochastic frontier estimates by size tercile.
The dependent variable is Tobin’s Q. All explanatory variables are as defined in Table 3. As in Table 4, Panel A, companies are sorted into terciles on the basis of their net sales in the first panel year. One, two and three asterisks indicate significance at $p<5\%$, $p<1\%$, and $p<0.1\%$, respectively.

<table>
<thead>
<tr>
<th>SFA</th>
<th>smallest size tercile</th>
<th>medium size tercile</th>
<th>largest size tercile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coeff.</td>
<td>t-stat.</td>
<td>coeff.</td>
</tr>
<tr>
<td>Frontier variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.683</td>
<td>7.966</td>
<td>3.038</td>
</tr>
<tr>
<td>ln(sales)</td>
<td>-0.284</td>
<td>-6.236</td>
<td>-0.570</td>
</tr>
<tr>
<td>ln(sales)2</td>
<td>-0.012</td>
<td>-2.487</td>
<td>0.043</td>
</tr>
<tr>
<td>R&D / K</td>
<td>0.048</td>
<td>1.769</td>
<td>0.421</td>
</tr>
<tr>
<td>ADV / K</td>
<td>-0.018</td>
<td>-0.205</td>
<td>-0.054</td>
</tr>
<tr>
<td>CAPEX / K</td>
<td>1.445</td>
<td>8.026</td>
<td>0.633</td>
</tr>
<tr>
<td>Y / Sales</td>
<td>0.013</td>
<td>2.518</td>
<td>0.110</td>
</tr>
<tr>
<td>K / Sales</td>
<td>-0.126</td>
<td>-3.104</td>
<td>-1.020</td>
</tr>
<tr>
<td>(K / Sales)2</td>
<td>0.003</td>
<td>3.660</td>
<td>0.152</td>
</tr>
<tr>
<td>Leverage</td>
<td>-2.659</td>
<td>-10.329</td>
<td>-1.231</td>
</tr>
<tr>
<td>Cost of capital</td>
<td>0.029</td>
<td>1.016</td>
<td>-0.031</td>
</tr>
<tr>
<td>Industry growth forecasts</td>
<td>0.041</td>
<td>6.567</td>
<td>0.001</td>
</tr>
<tr>
<td>Analyst following</td>
<td>0.425</td>
<td>8.066</td>
<td>0.207</td>
</tr>
<tr>
<td>Utility dummy</td>
<td>0.298</td>
<td>2.165</td>
<td>-0.206</td>
</tr>
<tr>
<td>Incentive variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.166</td>
<td>0.128</td>
<td>0.152</td>
</tr>
<tr>
<td>CEO stockholdings</td>
<td>-0.060</td>
<td>-2.220</td>
<td>-0.025</td>
</tr>
<tr>
<td>(CEO stockholdings)2</td>
<td>0.001</td>
<td>2.031</td>
<td>0.0005</td>
</tr>
<tr>
<td>CEO optionholdings</td>
<td>0.061</td>
<td>0.925</td>
<td>0.056</td>
</tr>
<tr>
<td>(CEO optionholdings)2</td>
<td>-0.004</td>
<td>-0.477</td>
<td>-0.003</td>
</tr>
<tr>
<td>Vega of options</td>
<td>-0.068</td>
<td>-2.747</td>
<td>-0.028</td>
</tr>
<tr>
<td>Capital market pressure</td>
<td>-1.105</td>
<td>-1.102</td>
<td>1.144</td>
</tr>
<tr>
<td>Product market pressure</td>
<td>-2.132</td>
<td>-0.724</td>
<td>0.299</td>
</tr>
<tr>
<td>Board size</td>
<td>0.154</td>
<td>0.437</td>
<td>-0.085</td>
</tr>
<tr>
<td>Board size2</td>
<td>-0.012</td>
<td>-0.529</td>
<td>0.004</td>
</tr>
<tr>
<td>Sigma</td>
<td>4.266</td>
<td>4.262</td>
<td>0.056</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR test of $u=0$ (χ^2)</td>
<td>29.6 **</td>
<td>62.6 ***</td>
<td>143.3 ***</td>
</tr>
<tr>
<td>$\sigma^2=\sigma_u^2+\sigma_v^2$</td>
<td>1.987</td>
<td>20.688</td>
<td>0.585</td>
</tr>
<tr>
<td>$\gamma=\sigma_u^2/\sigma_v^2$</td>
<td>0.046</td>
<td>1.240</td>
<td>0.000</td>
</tr>
<tr>
<td>No. firm-years</td>
<td>2,286</td>
<td>2,390</td>
<td>2,458</td>
</tr>
<tr>
<td>No. firms</td>
<td>436</td>
<td>436</td>
<td>435</td>
</tr>
<tr>
<td>Max no. panel years</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>