Using asset prices to measure the cost of business cycles

Fernando Alvarez Urban J. Jermann

First version: April 1999
Current version: August 2003

This research has been carried out within the NCCR FINRISK project on “Macro Risks, Systemic Risks and International Finance”.
Using asset prices to measure the cost of business cycles

Fernando Alvarez*
University of Chicago, and N.B.E.R.

Urban J. Jermann
The Wharton School of the University of Pennsylvania, and N.B.E.R.

First draft 04/99, current draft 08/03

Abstract

We measure the cost of consumption fluctuations using an approach that does not require the specification of preferences and instead uses asset prices. We measure the marginal cost of consumption fluctuations, the per unit benefit of a marginal reduction in consumption fluctuations expressed as a percentage of lifetime consumption. We find that the gains from eliminating all consumption uncertainty are very large. However, for consumption fluctuations corresponding to business cycle frequencies, we estimate the marginal cost to be between 0.08% and 0.49% of lifetime consumption. [Keywords: Asset pricing, Economic Fluctuations]

*We are grateful for the comments received from seminar participants at the Penn Macro Lunch at Wharton, the Federal Reserve of Philadelphia, Tom Sargent’s reading group in Stanford, Carnegie-Mellon University, Duke University, Universidad Torcuato Di Tella, UVA, UCLA, the NBER EF meetings, Columbia University, University of Chicago, University, Princeton University, Yale University, the CEPR/LIFE/Weiss Center Conference in Vouliagmeni, the Banco de Portugal Conference in Oporto, and the SED meeting in Costa Rica, University of Rochester, University of Michigan and Harvard University. We thank especially Andy Abel, Andrew Akeson, Bill Dupor, John Cochrane, Lars Hansen, Bob Lucas, and Chris Sims. Part of this research has been carried out within the NCCR FINRISK project “Macro Risks, Systemic Risks, and International Finance” direct by Prof. Hans Genberg at the Graduate Institute of International Studies, Geneva. The NCCR FINRISK is a research program supported by the Swiss National Science Foundation.
In a seminal contribution, Lucas (1987) proposes a measure of the welfare cost of economic fluctuations. His measure is defined as the compensation required to make the representative agent indifferent between consumption plans with and without business cycle fluctuations. With this measure, Lucas finds a very small cost of business cycles. Subsequently, several studies have proposed estimates of this cost of business cycles under alternative assumptions on preferences and consumption processes. As a function of these assumptions, estimates vary widely across studies. In our paper, we measure the welfare cost of business cycles through an approach that does not require the specification of consumer preferences; instead, we directly use financial market data.

We define the marginal cost of consumption fluctuations as the per unit benefit of a marginal reduction in consumption fluctuations. Because it is marginal, we can relate this cost directly to asset prices. In particular, we show the marginal cost to be equal to the ratio of the prices of two long-lived securities: one representing a claim to stabilized consumption, the other, a claim to actual consumption. Measuring the cost of economic fluctuations then becomes a task in asset pricing.

The literature has in general focused on the potential benefits of eliminating all consumption uncertainty, that is, replacing the actual consumption process by its expected path. We take this as a starting point of our analysis, but we also focus specifically on the welfare gain of eliminating business cycle fluctuations without eliminating all consumption risk. We believe that this difference is important because a large part of consumption fluctuations may not be directly related to business cycles and as such to policies related to business cycle stabilization. Based on no-arbitrage principles, we derive simple expressions for the marginal benefit of eliminating all uncertainty and for the benefit of eliminating business cycle fluctuations. These expressions are simple functions of an interest rate, the average growth rate of consumption, a consumption risk premium, and the moving average coefficients that define the process for stabilized consumption.

Estimating the marginal cost based on these expressions presents two challenges. First, we need to price a nontraded security, an equity claim to consumption. To do this, we use an extension of the method proposed by Cochrane and Saa Requejo (2000) that is based on no-arbitrage

1See for instance, Obstfeld (1994); Atkeson and Phelan (1994); Campbell and Cochrane (1995); Dolmas (1998); Hansen, Sargent, and Tallarini (1999); Krusell and Smith (1999); Otrok (2001); Tallarini (2000); Lucas (2003) for a recent survey of this literature; for the related literature on the welfare gains from international integration, see Lewis (1999) and Van Wincoop (1999).
restrictions when existing assets do not completely span the payoff of the asset to be priced. A second issue concerns the measurement of the business cycle components of consumption. We use a frequency domain approach following the work of Baxter and King (1998, 1999). This application is complicated because our requirement that the stabilized consumption be defined as the dividend of a security precludes the use of the standard two-sided moving average representation.

We have two sets of quantitative results. First, our estimate of the cost of all consumption uncertainty, while noisy, is extremely high. Essentially, offering agents a perpetual bond whose coupons are growing at the average growth rate of the economy would be extremely valuable. On the other hand, the cost of business cycle fluctuations is found to be small. We find that the costs of business cycles fluctuations are between 0.08% and 0.49% of consumption. This finding is robust to, among other things, the set of reference security returns used for pricing consumption risk, the specifications of the stochastic processes of consumption and returns, the possible imperfections of the frequency domain filters we use, and the introduction of durable goods consumption.

We organize the paper as follows. In section 1 we define the marginal cost and present characterizations in terms of yields and growth rates. Section 2, 3 and 4 contain the detailed empirical analysis. Section 5, presents analytical results about the marginal cost and its relationship to Lucas’ approach of measuring the cost of business cycles.

1 The marginal cost of consumption fluctuations

We start this section by defining the marginal cost of consumption fluctuations. We characterize this cost for two definitions of consumption fluctuations. The first includes all consumption uncertainty, the second covers business cycle fluctuations. In both cases we derive expressions for the marginal cost as functions of three variables: an interest rate, the average growth rate of consumption and a consumption risk premium. We then quantify the marginal costs using the values of these variables estimated in section 2 and 3 of the paper.

A. Defining the marginal cost of consumption fluctuations

Assume that \(\{x\} \) is a stochastic process for payoffs, that is, a stream of random payoffs for all dates \(t \geq 1 \), and that \(V_0 \{\{x\}\} \) is the time zero price of a security that pays \(\{x\} \). Consider the processes \(\{c\} \) that represent aggregate consumption, and \(\{C\} \) a more stable version of aggregate
consumption, which we call trend. We define the marginal cost of consumption fluctuations \(\omega_0 \) as the ratio of the values of two securities: a claim to the consumption trend, \(V_0[\{C]\} \), and a claim to aggregate consumption, \(V_0[\{c]\} \).

\[
\omega_0 \equiv \frac{V_0[\{C]\]}{V_0[\{c]\]} - 1.
\] (1.1)

If an agent can trade these two securities, the difference in prices \(V_0[\{C]\] - V_0[\{c]\] \) measures the benefit of removing the business cycle fluctuations from this agent’s consumption. This is achieved by selling the aggregate consumption process \(\{c\} \) and buying the consumption trend \(\{C\} \).

In equation (1.1), \(\omega_0 \) expresses this cost in terms of \(V_0[\{c]\] \), the value of aggregate consumption \(\{c\} \).

Estimating the marginal cost \(\omega_0 \) in (1.1) presents two challenges which occupy most of the body of the paper. We need to develop a workable definition of \(\{C\} \), and we need to measure the prices \(V_0[\{C]\] \) and \(V_0[\{c]\] \), which may not be directly observable.

We provide here an interpretation of \(\omega_0 \) for the particular case of a representative agent economy. Assume that in each period \(t \), the economy experiences one of finitely many events \(z_t \in Z \) and denote by \(z^t = (z_0, z_1, ..., z_t) \) the history of events up through and including period \(t \). We index commodities by histories, so we write \(x : Z \to R_+ \), where \(Z \equiv \prod_{t \geq 1} Z^t \), or simply \(\{x\} = \{x_t(z^t) : \forall t \geq 1, z^t \in Z^t\} \). Let \(U(\cdot) \) be a utility function, mapping consumption processes into \(R \). We define the total cost of consumption fluctuations function \(\Omega(\alpha) \) as the solution of

\[
U \left((1 + \Omega(\alpha)) \{c\} \right) = U \left((1 - \alpha) \{c\} + \alpha \{C\} \right),
\] (1.2)

where \(\alpha \in [0, 1] \), \(c : Z \to R_+ \) and \(C : Z \to R_+ \). Without writing it explicitly, we assume that \(c_0(z^0) \) enters the utility function in (1.2) in such a way as not to be multiplied by \((1 + \Omega(\alpha)) \), and that \(c_0(z^0) = C_0(z^0) \). The scalar \(\alpha \) measures the fraction of consumption \(\{c\} \) that has been replaced by the less risky trend consumption \(\{C\} \). The total cost function gives the total benefit from reducing consumption fluctuations as a function of the fraction of the reduction in fluctuations. It is straightforward to see that \(\Omega(0) = 0 \), since no reduction in fluctuations generates no benefit. Thus, \(\Omega'(0) \) is the first order approximation of \(\Omega(1) \) around \(\alpha = 0 \). We find \(\Omega'(0) \) a useful approximation of \(\Omega(1) \) because we can estimate \(\Omega'(0) \) using asset prices, indeed \(\Omega'(0) = \omega_0 \). To

\[\text{We present a non-representative agent interpretation in section 5 below.}\]

\[\text{In section (5) below, we present a more detailed analysis of } \Omega(\cdot), \text{ and a comparison of } \omega_0 \text{ with the cost used in Lucas (1987).}\]
see this, assuming that U is differentiable with respect to each $c_t(z^t)$ for all t and z^t, and denoting the partial derivatives by $U_{z^t}(\{c\}) \equiv \partial U(\{c\}) / \partial c_t(z^t)$, we obtain

$$
\Omega'(0) = \frac{\sum_{t=1}^{\infty} \sum_{z^t \in Z^t} U_{z^t}(\{c\}) \cdot (C_t(z^t) - c_t(z^t))}{\sum_{t=1}^{\infty} \sum_{z^t \in Z^t} U_{z^t}(\{c\}) \cdot c_t(z^t)}. \tag{1.3}
$$

Furthermore, notice that the shadow price of a security with payoff $\{x\}$ for the agent with consumption $\{c\}$, must be

$$
V_0[\{x\}] \equiv \frac{1}{U_{z^0}(\{c\})} \sum_{t=1}^{\infty} \sum_{z^t \in Z^t} U_{z^t}(\{c\}) \cdot x_t(z^t)
$$

Combining this expression with (1.3) we obtain $\omega_0 = \Omega'(0)$.

B. Cost of all uncertainty

Consider a definition of C_t that implies the elimination of all consumption uncertainty, namely

$$
C_t = E_0c_t. \tag{D1}
$$

Assume that the unconditional expectation of consumption growth does not depend on calendar time,

$$
E[c_{t+1}/c_t] = 1 + g. \tag{A1}
$$

Hence, using the definition in equation (1.1) we have

$$
\omega_0 = \frac{r_0 - g}{y_0 - g} - 1
$$

where we define y_0 as the yield to maturity that corresponds to the price $V_0(\{C_t\})$, and likewise r_0 for $V_0(\{c_t\})$, implicitly by

$$
\frac{V_0(\{C\})}{c_0} = \frac{1 + g}{y_0 - g} \tag{D2}
$$

and

$$
\frac{V_0(\{c\})}{c_0} = \frac{1 + g}{r_0 - g} \tag{D3}
$$

which implies that $y_0 > g$ and $r_0 > g$.

The yields to maturity y_0 and r_0 are defined by setting the expected growth rates of consumption for each period equal to its unconditional expectation g. Consistent with the standard properties of yields to maturity, if consumption growth were IID and if one-period interest rates were constant, then y_0 would be equal to the one-period interest rate. Moreover, if consumption growth were IID and if dividend-price ratios were constant, then r_0 would be the expected one-period return to consumption equity.
As shown in Table 1, for the period 1954-2001, the average per-capita growth rate of consumption g is 2.3%, and the average yield after inflation for long-term government bonds is 3.0%. As we will discuss in the next section, we estimate the consumption risk premium, $r_0 - y_0$, to have a mean of at least 0.2%. Combining these numbers gives us an estimate of the marginal cost of all uncertainty of at least

$$\omega_0 = \frac{r_0 - g}{y_0 - g} - 1 = \frac{(0.030 + 0.002) - 0.023}{0.030 - 0.023} - 1 = 28.6\%.$$

As we show below, substantially larger numbers can be obtained under reasonable alternative assumptions. This finding highlights the facts that security markets implicitly attach a very high value to a perpetual bond whose coupons are growing at the average growth rate of per capita consumption. Note that, as the yield y_0 gets close to the growth rate g, this value tends to infinity. It is also clear that the formula for the cost of all uncertainty is very sensitive to potential measurement errors in r_0, y_0 and g.

C. Cost of Business Cycles

To consider business cycle fluctuations, we define the trend as a one sided moving average of consumption

$$C_t = a_0 c_t + a_1 (1 + g) c_{t-1} + a_2 (1 + g)^2 c_{t-2} + ... + a_K (1 + g)^K c_{t-K}$$ \hspace{1cm} \text{(D4)}

for a vector of weights $a = (a_0, ..., a_K)$ satisfying

$$\sum_{k=0}^{K} a_k = 1.$$ \hspace{1cm} \text{(A2)}

Note that definition D4 and assumptions A1 and A2 imply that

$$E\left(\frac{C_t}{c_0}\right) = (1 + g)^t$$

so that, in expectation, the trend tracks consumption. We further assume that interest rates are constant and equal to y (A3) and that the following initial conditions hold

$$c_0/c_{-1} = c_{-1}/c_{-2} = ... = c_{-K+1}/c_{-K} = 1 + g.$$ \hspace{1cm} \text{(A4)}

The next Proposition derives an expression for the marginal cost of business cycles ω_0, as a function of r_0, y, g and a.

6
Proposition 1 Assume that we have discount bonds for all maturities and a consumption equity claim, then, ruling out arbitrage opportunities, and under assumptions A1, A2, A3 and A4, we have

\[\omega_0 = \sum_{t=1}^{\infty} \sum_{k=0}^{K} w_{0,t} a_k \left(\frac{1 + r_0}{1 + y} \right)^{\min\{t,k\}} - 1 \]

(1.4)

where the weights \(w_{0,t} \) are defined as

\[w_{0,t} \equiv \frac{r_0 - g}{1 + g} \left(\frac{1 + g}{1 + r_0} \right)^t. \]

(1.5)

The essence of the proof consists of a replication argument like the ones used to price a derivative security, which in our case is the consumption trend. To this effect, we design portfolio strategies, one for each time \(t \), with payoffs that exactly replicate the realizations of the consumption trend \(C_t \). To exactly replicate the payoffs we use the linearity of the trend consumption and the assumption of constant interest rates, so that portfolios of bonds can be rolled over into the future at known interest rates. The details of the proof are in the Appendix A. Note that, in this argument, the assumption of constant interest rate can be replaced with no loss of generality by the requirement that interest rates are known in advance. We would also like to stress that we use the yield to maturity for the consumption equity \(r_0 \) and the unconditional growth rate of consumption \(g \) to state the formula for the marginal cost \(\omega_0 \), but that we do not assume that either the returns of the consumption equity nor the consumption growth rates are IID in this Proposition.

Since the expression for (1.4) is complex, we introduce an approximation for the marginal cost

\[\omega_0 \approx (r_0 - y) \cdot \sum_{k=0}^{K} a_k k, \]

(1.6)

which is accurate for deviations from trend corresponding to business cycle fluctuations; see Appendix B for a derivation and section 3 below for an illustration. Thus, the marginal cost of business cycles is approximately equal to the consumption risk premium, a measure of the market price of risk, times a constant that depends on the moving average coefficients, a measure of the volatility of the deviations from trend. For instance, let’s compare the marginal costs \(\omega_0 \) and \(\omega'_0 \) for two moving average coefficient vectors \(a \geq 0 \) and \(a' \geq 0 \) respectively, and assume that \(a' \) puts more weight on higher \(k' \)'s, or formally that \(a' \) first order stochastically dominates \(a \). If furthermore, \(r_0 > y \), then, \(\omega'_0 > \omega_0 \).\(^4\) The intuition for this result is obvious for the extreme case

\(^4\)This comparative static result holds for the exact expression (1.4)
where \(a_0 = 1 \), so that the deviations from trend will be identical zero, and hence \(\omega_0 = 0 \). Finally, the following limiting case relates the marginal cost of business cycles to the marginal cost of all uncertainty.

Proposition 2 Setting

\[
a_0 = a_1 = \ldots = a_{K-1} = 0 \quad \text{and} \quad a_K = 1
\]

and letting \(K \) go to infinity, under the assumptions A1-A4, we obtain that

\[
\omega_0 = \frac{r_0 - g}{y - g} - 1,
\]

that is, the marginal cost of business cycles equals the marginal cost of all uncertainty.

Consider selecting the moving average coefficients \(a \) so that the deviations from trend correspond to the conventional view that business cycles last no more than 8 years. As described later in the paper, this results in a value of \(\sum_{k=0}^{K} a_k k \) of 0.387. Based on the estimates presented in the next section for the 1954-2001 period, we conclude that the mean of the consumption risk premium \(r_0 - y \) is between 0.2\% and 1.3\%. Thus, using equation (1.6), we estimate the mean of the marginal cost of business cycles \(\omega_0 \) to be between 0.08\% and 0.49\%.

2 Valuing consumption equity

In this section, we present our estimates of the value of a security with payoffs equal to aggregate consumption. We have shown that under the assumption of constant interest rates \(y \), we can compute the marginal cost of business cycles as a simple function of the consumption growth rate \(g \), and the moving-average weights defining business cycle fluctuations \(a \), once we know the value of consumption equity, with implicit yield to maturity \(r_0 \). Valuing consumption equity is nontrivial because this is not a traded security. We use as much as possible a preference-free asset pricing approach to value consumption equity as a function of other asset prices under the assumption of no-arbitrage. However, because consumption cannot be completely replicated by existing assets, additional assumptions are needed. The first two estimates for \(r_0 - y \) are obtained by adapting the method developed by Cochrane and Saa Requejo (2000) for the computation of bounds on the price of a security whose payoffs cannot be perfectly replicated by existing assets. The key of their method is to use the prices of observed portfolios as reference, together with a restriction on the highest possible Sharpe ratio to infer plausible prices for the unobserved
security. In addition to this, we also present estimates based on a parametric model for the stochastic discount factor.

We are interested in finding the price, V_t, of a claim to an infinite sequence of payoffs $\{c_{t+k}\}_{k=1}^{\infty}$. To save on notation and to focus on the main ideas, we start by assuming that the growth rates of the payoffs are IID and that the price-dividend ratios $v_t \equiv V_t/c_t$ are constant; we relax these assumptions later. In the IID case, we focus on the (constant) price of a security with a single payoff $c_0/c_t \equiv c_t+1/c_t$, denoted by q_t. It is immediate to see that the price-dividend ratio for the security that has payoffs $\{c_{t+k}/c_t\}_{k=1}^{\infty}$ is given by $v = \frac{q}{1-q}$. Overall, we will present three different estimates for q.

We assume that there is an observed set of $J+1$ reference portfolios with current price vector p and with the payoffs to be received next period given by vector x. We assume that there is a risk-free asset among this $J+1$ reference portfolios. Our first estimate of q is denoted by q^*, and it is given by the price of the part of the consumption payoff that is spanned by the reference portfolio x. That is, q^* is the price of a claim to $b^T x$, where $c'/c = b^T x + u$ and where u is orthogonal to x, so it satisfies $E[u x] = 0$. Thus $b^T x$ has the interpretation of the payoff of a portfolio b of the reference assets, and hence its value equals $b^T p$. We assume that the component u is priced as if it were a risk-free asset, that is, it has no risk-premium. Since x includes a risk-free asset, it must be that $E[u] = 0$ and hence we have $q^* = b^T \cdot p$.

Now we describe our second estimate of q, denoted by \underline{q}, which we take to be a lower bound of the price of the consumption strip. For this, we find it useful to introduce the concept of a stochastic discount factor. As it is well known, no-arbitrage guarantees the existence of a stochastic discount factor $m_{t+1} \geq 0$ that satisfies

$$p_t = E_t [m_{t+1} x_{t+1}]$$

for all prices and payoffs p_t, and x_{t+1}. An example of a valid stochastic discount factor in our set-up is

$$m_{t+1} (z^{t+1}) = \frac{U_{z^{t+1}}}{P(z_{t+1} | z^t)}$$

where P is the probability measure on histories z^t, and where U_{z^t} are the derivatives of U with respect to $c_t (z^t)$. Recall that the stochastic discount factor m_{t+1} is unique if and only if markets are complete. We define $\underline{q} = E [m \ c'/c]$ where the discount factor m as been suitably restricted. In particular, we follow Cochrane and Saa-Requejo by restricting the set of stochastic discount factors to be consistent with the prices of the reference payoffs and impose an upper bound on
its volatility. Specifically, \(q \) solves

\[
q = \min_{m \geq 0} E \left[m \frac{c'}{c} \right]
\]

subject to i) \(p = E [m x] \), ii) \(m \geq 0 \), and iii) \(\sigma (m) / E (m) \leq h \). Letting \(R \) and \(1+y \) be any gross return and the gross risk-free rate, condition iii) limits the Sharpe ratio of any gross return \(R \), defined as \(|E (R - (1 + y))| / \sigma (R) \), to be lower than \(h \). To see this, notice that \(E [m (R - (1 + y))] = 0 \), and hence

\[
\frac{|E_t (R - (1 + y))|}{\sigma_t (R)} \leq \frac{\sigma_t (m)}{E_t (m)},
\]

with \(E (m) = 1 / (1 + y) \). Thus, \(\sigma_t (m) / E_t (m) \) provides an upper bound to the market price of risk, i.e. the expected excess returns that one can trade off at market prices per unit of risk, as measured by the standard deviation of the returns. Using the language of Cochrane and Saa-Requejo, portfolios with large Sharpe ratios are good deals, and hence restriction iii) on the discount factors is interpreted as to mean that there should be no deals that are “too good”.

Cochrane and Saa-Requejo show how the prices \(q^* \) and \(\underline{q} \) are related. In particular, assuming that the non-negativity constraint ii) is not binding,

\[
q = q^* - \frac{1}{1 + y} \sqrt{(h^2 - \tilde{h}^2)} \sqrt{(1 - R^2)} \sigma \left(\frac{c'}{c} \right)
\]

where \(R^2 \) is the r-square from the regression of \(c'/c \) on \(x \) and where \(\tilde{h} \) is the highest Sharpe ratio that can be obtained with the reference assets. Clearly, \(\underline{q} \leq q^* \). The difference between \(q^* \) and \(\underline{q} \) depends on how well \(c'/c \) is fitted by the reference assets \(x \), as measured by the \(R^2 \), and on how far the highest allowable Sharpe ratio \(h \) is from the highest Sharpe ratio that is achievable with the reference portfolios \(\tilde{h} \). This formula shows that Condition iii) limits the size of the risk premium that is attributed to \(u \), the part of the payoff \(c'/c \) not spanned by \(x \). We estimate \(\underline{q} \) and \(q^* \) by replacing the population moments in the expression by their sample analogs.

We relax the assumptions of IID growth rates for the payoffs and constant price-dividend ratios by considering a setup with a Markov switching regime process. In particular, we let \(z_t = (s_t, \varepsilon_t) \) be as follows: let \(s_t \) be a Markov chain with \(s \in \{1, 2, ..., n\} = S \) and transition function \(\pi (s'|s) \), and let \(\varepsilon_t \in E \) be independent of the history \(\varepsilon^{t-1} \) and with a cumulative distribution function \(F (\varepsilon|s) = \Pr \{\varepsilon_t \leq \varepsilon|s_t = s\} \). We let consumption growth rates \(c_{t+1}/c_t = 1 + g (z_{t+1}) \) and reference payoffs \(x_{t+1} = x (z_{t+1}) \) be functions of \(z_{t+1} \), while the vector of prices of the \(J+1 \) reference assets \(p_t = p (s_t) \), and the price-dividend ratio \(V_t/c_t = v (s_t) \) are functions of \(s_t \). In Appendix C, we define operators whose fixed points give the prices \(V_t^* / c_t \) and \(V_t / c_t \), corresponding, respectively, to
the parts of consumption equity spanned by the reference assets and the lower bound of the value of consumption equity. For empirical implementation we consider two non IID specifications: a two-state regime switching process, and a bivariate VAR, which we further describe below.

Our third estimate for \(q \) is based on a parametric model for the stochastic discount factor \(m_{t+1} \). We let \(\log m_{t+1} \) be a linear function of aggregate consumption and the market return. This specification is motivated by the Lucas asset pricing model for a utility function with constant relative risk aversion, where \(\log m_t \) is linear in consumption growth, as well as by the generalization of Epstein and Zin (1991), that allows for a constant intertemporal elasticity of substitution different from the reciprocal of the coefficient of relative risk aversion, where \(\log m_{t+1} \) is linear in consumption growth and in the gross return on consumption equity. In particular we assume that \(m_{t+1} \) is given by

\[
 m_{t+1} = \delta \exp \left(\lambda^T n_{t+1} \right) \tag{2.1}
\]

where \(n_{t+1} \) is a vector of ‘factors’ with ‘loading’ vector \(\lambda \) and constant \(\delta \). Using reference payouts \(x_{t+1} \) with prices \(p_t \) we estimate the factor loadings using GMM on

\[
 0 = E \left(\exp \left(\lambda^T n_{t+1} \right) \cdot \left(\frac{x_{t+1}}{p_t} - y \right) \right).
\]

Then, under the assumption that the factors \(n_{t+1} \) and the returns \(\frac{x_{t+1}}{p_t} \) are IID, we estimate \(q \) through the sample analog to

\[
 0 = E \left(\exp \left(\lambda^T n_{t+1} \right) \cdot \left(\frac{x_{t+1}}{q} - y \right) \right).
\]

Tables 1 to 3 contain our estimates of the value of consumption equity for different specifications. Following Cochrane and Saa-Requejo, we have assumed that the highest admissible Sharpe ratio is 1 in annual terms. As they point out this is a rather large number, since the observed Sharpe ratio of a market portfolio is about 0.5. To facilitate the use of the formulas derived in section (1), we express the value of consumption equity in yields to maturity in excess of the risk-free rate, which we call the consumption risk premium, that is

\[
 r_0 - y = \frac{(1 + g)}{V_0} + g - y,
\]

for both \(V_0^* \) and \(V_0 \). Since \(V_0 \leq V_0^* \), the yield spread attributable to \(V_0 \) determines the upper bound of the consumption risk premium.

Table 1 contains estimates of the consumption risk premium under the assumptions of IID consumption growth and returns. We consider three sets of reference portfolios. In addition to a risk free rate, we use either the CRSP value-weighted portfolio return covering the NYSE and AMEX, 10 size deciles CRSP portfolios or 17 industry portfolios constructed by French (2002). Consumption is defined as consumption expenditure on nondurable and services. For the postwar period we find that the consumption risk premium of the spanned part is between 0.19% and 0.27% with upper bounds between 0.54% and 1.17%, depending on the reference portfolios.
The best replication is achieved through the 17 industry portfolios, with an R2 of 0.48. Considering longer sample periods increases these estimates by about 2 to 3 times.

Table 2 reports results when allowing for departures from the IID case. In the rows labelled VAR(1), we use a Markov chain approximation of a bivariate VAR process with Normal innovations consisting of the consumption growth rate and one excess return. We consider bivariate VAR’s, and hence include only one excess return, given the cost to numerically solve for q^* and q. We consider three different specifications for the excess returns, which correspond to the three cases considered in Table 1. For the two cases that cover several portfolios, that is the 10 size decile portfolios and the 17 industry portfolios, we use the combination of these returns that has the highest correlation with consumption. In the rows labelled “Regime switching process”, we use a two-state Markov regime, where, conditional on the state, consumption growth and the excess return are IID. We consider the same three specifications for the excess returns as in the VAR(1) case. Regimes are assumed to be observable and to be determined by splitting the sample into high and low growth rates of consumption. The cutoff is set at 0.5% below the mean annual growth rates in the sample, with the aim to capture the difference between recessions and expansions. We also explored alternative choices for regimes based on the NBER chronology. These results are not reported as they resulted in little quantitative differences. We find that, based on the spanned part, the consumption risk premium is between 0.11% and 0.28% and that the upper bound is between 1.14 and 1.77%, depending on whether the VAR or the two-state regime switching process is used, and depending on which excess return is used.\footnote{In computing the lower bound of the price we do not explicitly impose nonnegativity constraints on the stochastic discount factor. Imposing such constraints would tighten the bound closer towards the price of the spanned component.}

As a summary statistic of our main findings, we average the estimates in Table 1 and 2 for the postwar period; thus obtaining a risk premium of consumption equity of 0.2% for the part of consumption spanned by existing asset with an upper good deal bound of 1.3%. While the value of the spanned part of consumption does not correspond to a lower bound according to the good deal methodology, it seems reasonable to take this estimate as a lower bound because our prior beliefs would not be to attribute a negative risk premium to the part of consumption that is not

\footnote{Table 2 does not report results for the longer sample period covering 1927-2001, as this doesn’t result in any significant changes compared to the corresponding IID cases in Table 1.}
spanned by the returns in our sample. On the other hand, we consider the upper good deal bound of 1.3% truly as an upper bound for the risk premium of consumption equity. Indeed, while it might be possible to come up with return portfolios with large average excess returns that are more strongly correlated with consumption, our choice of a largest admissible Sharpe ratio of 1 seems generous enough, given that this is about twice what is implied by historical returns of a value weighted market portfolio. Moreover, explicitly imposing nonnegativity constraints would also tighten the bounds for annual data frequencies.

Table 3 contains estimates of the consumption equity premium under the parametric specification of the stochastic discount factor in (2.1). We present results for two specifications. In the first row, we use the consumption growth rate as the only factor in (2.1), following the Lucas asset pricing model, and we choose \(\lambda \) to fit the excess return of the market portfolio. In the second row, we consider a specification with two factors, the consumption growth rate and the gross market return and we choose the vector \(\lambda \) to fit the market return and the difference in return between the smallest and largest CRSP size decile portfolios. The third column shows that the consumption risk premium is estimated to be 1.11% for the one factor case and 0.21% for the two-factor case. Notice that these values are in between the ones estimated by the methods reported in Tables 1 and 2.

We have further explored the sensitivity of our results to five sets of auxiliary assumptions without reporting them here in detail. First, the exact value of the risk free rate used to estimate the consumption equity premium \(r_0 - y \) turns out not to be important. To a first approximation, our methods just estimates covariance risk. Second, we have considered an alternative timing convention for combining consumption growth rates and returns. For the benchmark case reported here we have paired consumption growth from year \(t \) to \(t+1 \) with returns from the first to the last day of year \(t \). Alternatively, we have considered returns from the last day of June in \(t \) until the last day of June in \(t+1 \). The findings are barely distinguishable across the two cases. Third, we have considered quarterly data for the postwar period 1954-2001. In general, consumption risk premia are somewhat smaller (after annualization) than for the annual results reported here. The robustness of our estimates across specifications and return sets that we have reported for annual data also holds for the quarterly period. Fourth, we have included the return spread between long term corporate bonds and government bonds from Ibbotson Associates and found that the results were not sensitive to the addition of these portfolios. Fifth, in the NBER working paper
version of this paper we have considered richer specifications of the stochastic discount factor (2.1), allowing for non-IID returns—including variable interest rates—and consumption growth rates in a multivariate VAR context; results where similar.

3 Measuring business cycles

In this section, we describe the choice of the moving average coefficients \(\{a_k\} \) that determine the consumption trend \(\{C\} \), as defined in equations D4 and A2. We define the trend \(\{C\} \), so that the deviations of consumption from trend, \(c_t - C_t \) are fluctuations that last 8 years or less. Thus, the trend \(\{C\} \) contains fluctuations that last more than 8 years. Our definition of business cycles as fluctuations that last up to 8 years is consistent with the definition of Burns and Mitchell (1946) and also corresponds approximately to the definition of business cycles implied by the widely used Hodrick-Prescott filter for quarterly data with a smoothing parameter of 1600.

We choose the moving-average coefficients \(\{a_k\} \) so as to represent a low-pass filter that lets pass frequencies that correspond to cycles of 8 years and more. Low-pass filters are represented in the time domain by infinite-order two-sided moving averages. However, a requirement of our analysis is to have trend consumption in time \(t \) be function of information available at time \(t \), thus, our choice of a one-sided moving average. To do this, we follow the approach presented by Baxter and King (1998, 1999). Let \(\beta(\nu) \) be the frequency response function of the desired low-pass filter, which in our case is equal to one for frequencies lower than 8 years and zero otherwise. Let \(\alpha_K(\nu) \) be the frequency response function associated with a set of moving-average coefficients \(\{a_k\}_{k=0}^{K} \). We select the moving-average coefficients \(\{a_k\}_{k=0}^{K} \) so that \(\alpha_K \) approximates \(\beta \). In particular, our choice of \(\{a_k\} \) minimizes

\[
\int_{-\pi}^{\pi} |\beta(\nu) - \alpha_K(\nu)|^2 f(\nu) \, dv,
\]

(3.1)

where \(f(\nu) \) is a weighting function representing (an approximation to) the spectral density of the series to be filtered. In this minimization, we impose the condition \(\alpha_K(0) = 1 \), which implies that \(\sum_{k=0}^{K} a_k = 1 \).

We use the spectral density of an AR(1) with an autoregressive coefficient of 1 as the weighting function \(f \), because this matches approximately the spectral density of consumption. See also Alvarez and Jermann (2002) for another view about how consumption fluctuations are largely permanent. We set the number of lags \(K = 20 \). In our case, using more coefficients does not
significantly affect quantitative results; with less coefficients, results are slightly different. The coefficients are given in Appendix D.

Cost of business cycles corresponding to the estimates of consumption risk premiums that we discussed above are presented in Tables 1 to 3. Take, for instance, Table 2, the regime switching case, labelled “R(17ind)”. In this case, the cost of business cycles is 0.07% based on the spanned part of consumption as displayed in the fifth column, with 0.43% as an upper bound estimate, as displayed in the sixth column.

All results reported in the tables are based on the exact formula derived in Proposition (1). We illustrate here the accuracy of the approximation given by equation (1.6). For instance, for the same case just discussed, Table 2 shows the consumption risk premium based on the spanned part at 0.18%, and based on the good deal upper bound at 1.14%. For \(K = 20 \), with the optimal filter weights, \(\sum_{k=0}^{K} a_k k \) equals 0.387, so that the approximate cost of business cycles is 0.07% based on the spanned part with an approximate upper bound of 0.44%.

Following our discussion in the previous section, we summarize the main quantitative results by averaging the estimates of \(\omega_0 \) based on post-war data presented in Tables 1 and 2. We find cost of business cycles to be between 0.08%, based on the spanned part of consumption, and 0.49%, based on the upper good deal bound. As we further discuss below, these conclusions are quite robust to alternative filters and the introduction of durable goods consumption.

A. Discussion of one-sided filters

We provide here some discussion about the extent to which our results are robust to the particular filter choice. As a specific requirement of our analysis we need a one-sided filter. However, being one-sided, this filter cannot avoid introducing a phase shift. This results in the trend lagging the original series. In particular, the objective function displayed in equation (3.1) can be written as the integral of the square of the differences of the gains of the filters, \((|\beta(v)| - |\alpha_K(v)|)^2 \), plus a term that depends on the phase shift. This second term is zero, if the filter has no phase shift. Figure 1 illustrates this issue by plotting the transfer function (the squared gain) of this filter in the left panel. The transfer function should be one in-between the desired frequencies and zero for higher frequencies. Instead, it tends to let pass up to 30% of the variance at higher frequencies, so that the computed trend contains a nonnegligible amount of cyclical variability. As shown in the right panel of Figure 1, and as is well known, two-sided band-pass filters fit the ideal filter’s step function much closer—remember that a symmetric two-sided
filter does not introduce a phase shift. The corresponding time-domain representation is in Figure 2. Specifically, deviations from trend scaled by a growth factor \((c_t - C_t) / c_0 (1 + g)^t\) are shown for one-sided and two-sided filters. Clearly, the one-sided filter generates cyclical movements that are less volatile than those from the corresponding two-sided filter.

Based on this comparison, we can consider an ad hoc adjustment to the one-sided filter so as to replicate the amount of business cycle volatility obtained from the more accurate two-sided filter. As shown in Figure 2, the series generated by the one-sided filter is strongly correlated with the series from the two-sided filter, but the series generated by the one-sided filter is less volatile. In particular, for the postwar period 1954-2001, the plotted deviations from trend, \((c_t - C_t) / c_0 (1 + g)^t\), have standard deviation of 0.55 and 0.65 for the one, respectively, two-sided filter. We can scale up the volatility of business cycles by multiplying the cyclical deviations by a constant \(\theta > 1\), so that the cyclical component is adjusted to become \(\theta (c_t - C_t)\).\(^8\) Specifically, with \(\theta = 1.2\), the standard deviation of the scaled one-sided filter is about equal to the one from the two-sided filter. A little algebra shows that with this adjustment the approximate cost of business cycles defined in equation (1.6) is just multiplied by \(\theta\), becoming \(\theta (r_0 - y) \times \sum_{k=0}^{K} a_k k\). Thus, to the extent that adjusting business cycles obtained from a one-sided filter requires an increase in standard deviation of 20%, the cost of business cycles is also increased by a factor of 0.2.

An alternative one-sided filter can be obtained from the two-sided filter by forecasting future values based on available information at the time of the payout. Assuming that consumption follows a random walk, this would imply that the sum of all the leading coefficients would be added to \(a_0\), without changing the coefficients corresponding to lagged values of consumption. As can be shown, for our case with \(f(\omega)\) the pseudo spectrum of a random walk, this one-sided filter equals the one used in this paper.

Overall, we conclude that possible adjustments to the one-sided filter used in this paper are not likely to result in considerable changes in the cost of business cycles, as long as the definition of business cycles is based on the idea of cyclical movements lasting no more than 8 year.

\(^7\)Note, for this figure and the corresponding calculations we use filters with \(K = 5\), so as not to lose too many observations. For the period of overlap, the case with \(K = 20\) (not shown) results in very similar time series realizations.

\(^8\)Note, in this case, the trend is given by \((1 - \theta) c_t + \theta C_t\).
4 Durable goods

In this section we examine the impact of expanding the definition of consumption to include durables in addition to nondurables and services. We find that stabilizing durable goods consumption creates a sizable gain when measured in percentage terms of this type of consumption goods. However, because the value of the lifetime consumption of durables is so much smaller than for nondurables and services, the overall effect on the marginal cost of business cycles is small.

We derive an expression for the marginal cost of fluctuations that includes both durable consumption goods, and nondurable consumption goods and services. We assume that the utility function has nondurables and services, c^{ns}, and durables c^d, and define the cost of fluctuations Ω as before

$$U \left((1 + \Omega (\alpha)) \{c^{ns}\}, (1 + \Omega (\alpha)) \{c^d\} \right)$$

$$= U \left((1 - \alpha) \{c^{ns}\} + \alpha \{C^{ns}\}, (1 - \alpha) \{c^d\} + \alpha \{C^d\} \right),$$

where C^{ns} and C^d are the trends in nondurable and services’ consumption and durables consumption respectively. As in the previously discussed case with one type of goods, the marginal cost is obtained by differentiating (4.1) with respect to α,

$$\Omega'(0) \equiv \bar{\omega}_0 = \frac{\sum_{t \geq 1} \sum_{z^t \in Z^1} \left[\frac{\partial U}{\partial c^{ns}_t} C^{ns}_t (z^t) + \frac{\partial U}{\partial c^d_t} C^d_t (z^t) \right]}{\sum_{t \geq 1} \sum_{z^t \in Z^1} \left[\frac{\partial U}{\partial c^{ns}_t} C^{ns}_t (z^t) + \frac{\partial U}{\partial c^d_t} C^d_t (z^t) \right]} - 1.$$

This can be written here as

$$\bar{\omega}_0 = \frac{V^{ns}_0 \{C^{ns}\}}{V^{ns}_0 \{c^{ns}\}} + P_0 V^d_0 \{C^d\} - 1,$$

where P_0 is the time zero spot price of durables in terms of nondurables, and where V^{ns}_0 and V^d_0 are the prices to streams of nondurables and services and to durables consumption goods, each in terms of their own time zero goods’ units, respectively, defined as

$$V^i_0 \{x^i\} = \frac{1}{\partial U / \partial c^i_0} \sum_{t \geq 1} \sum_{z^t \in Z^1} \frac{\partial U}{\partial c^i_t} (z^t) x^i_t (z^t), \text{ for } i \in (ns, d), x \in (c, C),$$

and

$$P_0 = \frac{\partial U / \partial c^d_0}{\partial U / \partial c^{ns}_0},$$

where the utility function U is evaluated at $\{c^{ns}\}, \{c^d\}$. The expression for the aggregate marginal cost of fluctuations can be written more compactly as

$$\bar{\omega}_0 = (1 - s_0) \omega^{ns}_0 + s_0 \omega^d_0,$$
where $$\omega_i^0 \equiv V_0^i(\{C^i\}) / V_0^i(\{c^i\}) - 1$$ for $$i \in (ns, d)$$ and where $$s_0$$ denotes the share of the value of the durable consumption equity in aggregate consumption equity, that is,

$$s_0 = \frac{P_0 V_0^d(\{c^d\})}{V_0^{ns}(\{c^{ns}\}) + P_0 V_0^d(\{c^d\})}$$

In our previous sections we have estimated $$\omega_{0}^{ns}$$. Thus, our remaining tasks in order to estimate $$\bar{\omega}_{0}$$ are to obtain empirical counterparts of $$\omega_d^0$$ and $$s_0$$.

We start describing our estimation of the cost of fluctuations of durables consumption $$\omega_d^0$$. We distinguish between expenditure on durables and durables’ consumption. Specifically, we assume that consumption services are provided by the stock of durables, which is assumed to depreciate at a constant rate and to increase by current period durable expenditures. Then, durable consumption, $$c^d_t$$, can be represented as a one-sided moving average of current and past expenditure, $$e_{t-j}$$, on consumer durables $$c^d_t = \sum_{j=0}^{\infty} d_j e_{t-j}$$.

The value of a claim to lifetime durable consumption is computed in two steps. First, we estimate the value of lifetime durable expenditure the way we did this in section 2 for the consumption of nondurables and services. Second, following the derivations in Proposition 1, we can write the value of lifetime durable consumption as a linear function of the value of lifetime durable expenditure, with the linear coefficients functions of $$\{d_j\}$$, $$y$$ and $$g$$. Indeed, this is possible because durable consumption is specified as a one-sided moving average of expenditure, just as the consumption trend has been specified as a one-sided moving average of consumption.

Table 4 reports the estimated price of a claim to durable consumption in terms of durable consumption by using the corresponding yields, $$r_d^0 - y$$, as in Tables 1 and 2. The estimated risk premium for durables consumption goods is between 0.45% and 1.48% based on the spanned part, with upper good deal bounds between 5.77% and 6.49%. These values are more than 3 and 7 times higher than the risk premiums estimated for consumption of nondurables and services. The main reason for the increase is the higher volatility of the growth rates of durable expenditure, which have an annual standard deviation of 6.7% compared to only 1.16% for nondurables and services, for the sample covering 1954-2001. The fifth and sixth column of Table 4 display estimates of the business cycle cost $$\omega_d^0$$ using the same weights $$\{a_k\}$$ as in Tables 1 and 2.

[Insert Table 4]

We estimate the average of the value share of durable consumption equity in total consump-

9We end up truncating the lags at 10 years for the computations. We found that the truncation lag was not quantitatively important.
tion equity s_0 to be 6% and 4.3% corresponding, respectively, to the spanned part and the upper bound estimates from the IID cases in Table 1 and 4. These shares are smaller than the average expenditure share for durable consumption, which for the post-war period is about 13% of total consumption expenditure. This is because the price/consumption ratios for durables $V_0(\{c^d\})/c^d_0$ are smaller than $V_0(\{c^{ns}\})/c^{ns}_0$, the counterparts for nondurables and services. See appendix D for more details about the calculation of s_0.

Finally, combining the estimates of ω^{ns}_0, ω^d_0 and s_0 as in equation 4.2, we can compute an estimate for the aggregate cost of fluctuations including both durables and nondurable consumption goods. For the IID case, we estimate the aggregate cost ω_0 to be 0.10% based on the prices for the spanned parts; this is higher than the corresponding estimate of $\omega^{ns}_0 = 0.07\%$ for nondurables and services in Table 1. Using the estimates based on the upper bound of $r_0 - y$, the aggregate cost is $\omega_0 = 0.51\%$, compared to the corresponding $\omega^{ns}_0 = 0.44\%$ for nondurable and services in Table 1. We conclude that adding durable consumption goods does not significantly change our estimates.

5 Comparing marginal cost and total cost of consumption fluctuations

In this section, we present some results about the properties of the marginal cost function that allow us to link our approach more closely to the large literature that has focused on computing total costs in the line of Lucas (1987). Our main result is a set of conditions under which the marginal cost is an upper bound for the total cost. We also present an example for the cost of all uncertainty with expected, time-separable utility. In this case, we show that the marginal cost equals twice the total cost up to a second-order approximation.\(^{10}\)

We start this section by comparing our approach to Lucas (1987). For that purpose, we define the total cost of consumption fluctuations as $\Omega(1)$, that is $U((1 + \Omega(1))\{c\}) = U(\{C\})$. Defining the trend consumption to be $\{C\} = \{E_0(c)\}$, that is where $C(z^t) = E_0(c_t)$ for all t and z^t, we obtain

$$U((1 + \Omega(1))\{c\}) = U(\{E_0(c)\}), \quad (5.1)$$

which is Lucas’ definition of the cost of business cycles. Thus, Lucas’ definition can be seen as the total benefit associated with eliminating all the consumption fluctuations, that is, $\alpha = 1$, and

\(^{10}\)Additional results, for instance about consumption externalities, are available in the working paper version Alvarez and Jermann (2000).
where consumption fluctuations are defined as consumption uncertainty, that is, resulting in the exchange of consumption for its expected path.

Note that the specification in equation (5.1) differs slightly from Lucas’ and the literature’s standard specification because we have chosen to begin compensation as of $t = 1$; the standard has been to start compensation at $t = 0$. We choose this departure because our definition is more consistent with the idea of ex-dividend security prices, and some of our qualitative results present themselves more tractably with our definition. In any case, the quantitative difference between Lucas’ definition and ours should be insignificant.

We provide here also an alternative interpretation of our marginal cost ω_0, that is valid with incomplete markets. For that purpose, assume that for individual agents indexed by i, consumption is given as

$$c^i = c + \varepsilon^i,$$

where ε^i is the idiosyncratic component and where $c = C + d$, so that d stands for the deviation from the (aggregate) trend. To save on notation, we omit time subscripts. If we then define Ω as compensating only the aggregate component $\{c\}$, so that

$$U^i \left(\left\{ (1 + \Omega^i(\alpha)) c + \varepsilon^i \right\} \right) = U^i \left((1 - \alpha) \{c^i\} + \alpha \{C + \varepsilon^i\} \right),$$

and if we assume all agents i have access to claims paying $\{c\}$ and $\{C\}$, we have that

$$\Omega^i(0) = \frac{V[\{C\}]}{V[\{c\}]} - 1 = \omega_0.$$

Indeed, under the stated assumptions, even with agents subject to possibly uninsurable idiosyncratic risk, they would end up equalizing their valuations for $\{c\}$ and $\{C\}$.

A. Homothetic preferences and scale-free cost functions

To analyze the marginal cost function, we make the following initial assumptions: $U(\{c\})$ is increasing and concave in $\{c\}$. We also assume that the process $\{C\}$ is preferred to $\{c\}$, that is, $U (\{C\}) > U (\{c\})$. If we require that the cost of fluctuations $\Omega(\alpha)$ be the same for the processes $\{c\}$ and $\{C\}$ as for the processes $\{\lambda c\}$ and $\{\lambda C\}$, where λ is any positive scalar, then we must impose some additional restrictions on the utility function U. This requirement implies that the cost of consumption fluctuations will not differ merely because economies are rich and poor. Specifically, we require U to be homothetic; that is, U is homogeneous of degree $1 - \gamma$, *i.e.*, for
any positive scalar $\lambda > 0$, and for any process $\{c\}$ we have

$$U(\lambda \{c\}) = \lambda^{1-\gamma} U(\{c\}).$$

Under these assumptions, we obtain that the marginal cost is higher than the total cost.

Proposition 3 Assume that U is increasing, concave, and homothetic. Also assume that $\{C\}$ is preferred to $\{c\}$, that is, $U(\{C\}) > U(\{c\})$. Then $\Omega(\alpha)$ is concave, and thus,

$$\omega \equiv \Omega'(0) \geq \Omega(1).$$

Examples from the literature that satisfy this homogeneity property are the preferences used in Abel (1999), Epstein and Zin (1991), Mehra and Prescott (1985), and Tallarini (2000).

B. Example: Cost of all uncertainty with expected utility

Now we present some implications for the total and marginal cost Ω and Ω' with time-separable, expected utility. We also assume that the trend $\{C\}$ is given by the expected value of consumption; that is, we evaluate the elimination of all uncertainty. We assume that consumption fluctuations are small. We show that for an approximation up to the order of the variance of consumption, the total cost of uncertainty equals half of the marginal cost; that is, $\Omega(1) = \frac{1}{2}\Omega'(0)$. In this case, the marginal cost is given by a weighted average of the product of risk aversion and the variance of consumption for different periods. We also consider a higher order approximation to examine the role of skewness in consumption fluctuations. We show that if the period utility function u displays prudence, that is $u''' > 0$, and if consumption fluctuations have negative skewness, then we obtain a stronger inequality, that is $\Omega(1) < \frac{1}{2}\Omega'(0)$.

Consider the one-period case, where consumption is given by

$$c = \bar{c}(1 + \sigma \varepsilon)$$

for a zero-mean random variable ε. The parameter σ indexes the amount of risk. The trend is given by the expected value, that is, $C = \bar{c} \equiv E[c]$. Notice that the variance of c is proportional to σ^2—that is, $\text{var}(c/\bar{c}) = \sigma^2 E\varepsilon^2$—and that its third moment is proportional to σ^3. We include σ as an argument of the total and the marginal costs, which are given by

$$E[u(c(1 + \Omega(1, \sigma)))] \equiv E[u(\bar{c}(1 + \sigma \varepsilon)(1 + \Omega(1, \sigma)))] = u(\bar{c}), \quad (5.2)$$

11Rietz (1988) assumes that there is a small probability of a large drop in consumption, motivated by the Great Depression, and he shows that this leads to a substantial increase in the equity premium.
\[\Omega' (0, \sigma^2) = \frac{E[u'(c)(\bar{c} - c)]}{E[u'(c)c]} = \frac{-E[u'(\bar{c} + \bar{c}\sigma\varepsilon)\bar{\varepsilon}\sigma\varepsilon]}{E[u'(\bar{c} + \bar{c}\sigma\varepsilon)(\bar{c} + \bar{c}\sigma\varepsilon)]}. \]

(5.3)

Proposition 4 If \(E[u''(\bar{c}(1 + \varepsilon))\varepsilon^4] \) is finite, then

\[\Omega'(0, \sigma) = 2\Omega(1, \sigma) - \frac{\sigma^3}{6} \frac{\bar{c}^2 u''(\bar{c})}{u'(\bar{c})} E\varepsilon^3 + o(\sigma^3). \]

where \(h(\sigma) = f(\sigma) + o(\sigma^p) \) means that \(\lim_{\sigma \to 0} [h(\sigma) - f(\sigma)] / \sigma^p = 0. \)

The proof is standard, and together with additional examples and the multiperiod case can be found in the working paper version Alvarez and Jermann (2000).

6 Conclusion

The approach developed in this paper allows us to estimate the cost of consumption fluctuations directly from asset prices. Instead of specifying and calibrating a utility function, we use the idea of no-arbitrage to compare the value of a claim to lifetime consumption and a claim to stabilized lifetime consumption. Our two main quantitative findings are that the elimination of all consumption uncertainty would be very valuable while the elimination of consumption fluctuations at business cycle frequencies is not.
Proposition 1. Start by collecting all the terms in \(\{C\}_{t=1}^{\infty} \) that involve a \(c_t \) for some arbitrary \(t \geq 1 \). To do this consider the dividend paid by the consumption-trend asset at times \(t, t+1, \ldots, t+K \) :

\[
C_t : a_0 c_t + \ldots, C_{t+1} = \ldots + a_1 (1+g) c_t + \ldots, \text{ and } C_{t+K} = \ldots + a_K (1+g)^K c_t.
\]

Due to the constant interest rates, we can assign a value to each of the terms that include a \(c_t \) through simple replication, so that

\[
V_0 [C_t] = a_0 V_0 [c_t] + \ldots
\]

\[
V_0 [C_{t+1}] = a_1 (1+g) V [c_t] / (1+y) + \ldots
\]

\[\vdots\]

\[
V_0 [C_{t+K}] = \ldots + a_K (1+g)^K V_0 [c_t] / (1+y)^K.
\]

where \(V_0 [c_t] \) is the price at time zero of a claim to \(c_t \) at time \(t \). Clearly, \(V_0 [\{c_t\}_{t=1}^{\infty}] = \sum_{t=1}^{\infty} V_0 [c_t] \).

Thus, collecting the terms that have common factor \(V_0 [c_t] \):

\[
V_0 [c_t] \left\{ a_0 + a_1 \frac{(1+g)}{1+y} + a_2 \left(\frac{1+g}{1+y}\right)^2 + \ldots + a_K \left(\frac{1+g}{1+y}\right)^K \right\}.
\]

There is an expression like this one for each \(t \geq 1 \). The remaining payoffs at time \(t = 1, 2, \ldots, K \) that correspond to consumption values \(c_0, c_{-1}, \ldots, c_{-K} \) are grouped in a similar fashion. Rearranging terms and using the assumption that \(1+g = c_0 / c_{-1} = c_{2-K}/c_{1-K} \),

\[
V_0 \left[\left\{ \frac{C_t}{c_0} \right\}_{t=1}^{\infty} \right] = \left[a_1 \frac{1+g}{1+y} + a_2 \left(\frac{1+g}{1+y}\right)^2 + \ldots + a_K \left(\frac{1+g}{1+y}\right)^K \right]
\]

\[
+ \left[a_2 \frac{1+g}{1+y} + a_3 \left(\frac{1+g}{1+y}\right)^2 + \ldots + a_K \left(\frac{1+g}{1+y}\right)^{K-1} \right]
\]

\[\vdots\]

\[
+ V_0 \left[\left\{ \frac{c_t}{c_0} \right\}_{t=1}^{\infty} \right] \left\{ a_0 + a_1 \frac{(1+g)}{1+y} + a_2 \left(\frac{1+g}{1+y}\right)^2 + \ldots + a_K \left(\frac{1+g}{1+y}\right)^K \right\}.
\]

Equation (1.4) is derived through the following steps. Using the definition of \(\omega_0 \), rearranging terms and using the definition for \(r_0 \), \(\frac{r_0-g}{1+g} = \frac{c_0}{V_0[\{c_t\}_{t=1}^{\infty}]} \), gives

\[
1 + \omega_0 = a_0
\]

\[
+ a_1 \left\{ \frac{r_0-g}{1+g} \left[\frac{1+g}{1+y}\right] + \frac{1+g}{1+y} \right\}
\]

23
\[+ a_2 \left\{ \frac{r_0 - g}{1 + g} \left[1 + \frac{g}{1 + y} + \left(\frac{1 + g}{1 + y} \right)^2 \right] + \left(\frac{1 + g}{1 + y} \right)^2 \right\} \\
+ ... \\
+ a_K \left\{ \frac{r_0 - g}{1 + g} \left[1 + g \left(\frac{1 + g}{1 + y} \right) + ... + \left(\frac{1 + g}{1 + y} \right)^K \right] + \left(\frac{1 + g}{1 + y} \right)^K \right\} \].

Defining \(w_{0,t} = \left(\frac{r_0 - g}{1 + g} \right) \left(\frac{1 + g}{1 + r_0} \right)^t \), and replacing in the last expression gives (1.4) after some arrangements. □

Proposition 2. Assuming that \(a_0 = a_1 = ... = a_{K-1} = 0 \) and \(a_K = 1 \), the last equation in the proof of Proposition (1) can be written as

\[1 + \omega_0 = \sum_{t=1}^{K} w_{0,t} \left(\frac{1 + r_0}{1 + y} \right)^t + \sum_{t=K+1}^{\infty} w_{0,t} \left(\frac{1 + r_0}{1 + y} \right)^t \]

Take the limit as \(K \to \infty \)

\[1 + \lim_{K \to \infty} \omega_0 = \lim_{K \to \infty} \sum_{t=1}^{K} w_{0,t} \left(\frac{1 + r_0}{1 + y} \right)^t = \lim_{K \to \infty} \sum_{t=1}^{K} \left(\frac{r_0 - g}{1 + g} \right) \left(\frac{1 + g}{1 + r_0} \right)^t \left(\frac{1 + r_0}{1 + y} \right)^t \\
= \left(\frac{r_0 - g}{1 + g} \right) \lim_{K \to \infty} \sum_{t=1}^{K} \left(\frac{1 + g}{1 + y} \right)^t = \left(\frac{r_0 - g}{1 + g} \right) \left(\frac{1 + g}{1 + y} \right) \frac{1}{1 - \frac{1 + g}{1 + y}} \\
= \frac{r_0 - g}{y - g} \]

where we have used that

\[\lim_{K \to \infty} \left(\frac{1 + r_0}{1 + y} \right)^K \sum_{t=K+1}^{\infty} w_{0,t} = \lim_{K \to \infty} \left(\frac{1 + r_0}{1 + y} \right)^K \left(\frac{1 + g}{1 + r_0} \right)^K = \lim_{K \to \infty} \left(\frac{1 + g}{1 + y} \right)^K = 0. \]

□

Proposition 3. If \(U \) is increasing and concave in \(\{c\} \), there must exist a utility function \(v \) that is homogeneous of degree one, positive, and quasiconcave, and satisfies

\[U (\{c\}) = \frac{[v (\{c\})]^{1-\gamma}}{1 - \gamma}. \]

To start, we show that \(\Omega (\alpha) \) is concave in \(\alpha \). By homogeneity of \(U \),

\[(1 + \Omega (\alpha))^{1-\gamma} \frac{[v (\{c\})]^{1-\gamma}}{1 - \gamma} = \frac{[v ((1 - \alpha) \{c\} + \alpha \{C\})]^{1-\gamma}}{1 - \gamma}. \]

Thus, after multiplying by \((1 - \gamma)\), taking the \(1/(1 - \gamma)\) power, and dividing by \(v (\{c\})\) on both sides, we obtain that

\[1 + \Omega (\alpha) = \frac{v ((1 - \alpha) \{c\} + \alpha \{C\})}{v (\{c\})}. \]

24
Since \(v(\cdot) \) is positive, quasiconcave and homogeneous of degree one, it is concave. With \((1 - \alpha) \{c\} + \alpha \{C\}\) linear in \(\alpha \), \(v(\cdot) \) is also concave in \(\alpha \); thus, \(\Omega(\alpha) \) is concave. Now we use the concavity to obtain the desired relationships,

\[
\Omega(1) = \Omega(0) + \int_0^1 \Omega'(\alpha) d\alpha \leq \Omega'(0),
\]

where the inequality uses \(\Omega(0) = 0 \), the concavity of \(\Omega \), and that \(\alpha \leq 1 \).

8 Appendix B.

Approximation for the marginal cost of business cycles. Starting with equation 1.4, and assuming \(a > 0 \), we obtain the following inequality

\[
\omega_0 = \sum_{t=1}^{\infty} \omega_{0,t} \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{\min\{t,k\}} - 1
\]

(8.1)

\[
= \sum_{t=1}^{K} \omega_{0,t} \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{\min\{t,k\}} + \sum_{t=K+1}^{\infty} \omega_{0,t} \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{k} - 1
\]

\[
\leq \sum_{t=1}^{K} \omega_{0,t} \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{k} + \left[1 - \sum_{t=1}^{K} \omega_{0,t} \right] \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{k} - 1
\]

\[
= \sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{k} - 1
\]

with equality if \(a_0 = 1 \), and \(a_1 = \ldots = a_K = 0 \). Thus, to the extent that not too much weight is given to the \(a \)'s corresponding to long lags, the inequality is close to an equality. Moreover, using a first order approximation around \(r_0 = y = 0 \),

\[
\sum_{k=0}^{K} a_k \left(\frac{1 + r_0}{1 + y} \right)^{k} - 1 \approx \sum_{k=0}^{K} a_k (1 + k (r_0 - y)) - 1 = (r_0 - y) \sum_{k=0}^{K} a_k k
\]

9 Appendix C: Recursive pricing approaches

We present here our recursive approaches to deriving price-dividend ratios \(v^* \) and \(\varpi \). To obtain the price-dividend ratio \(v^* \) we define the operator \(T^* : R^m_+ \rightarrow R^m_+ \) given by

\[
T^*(v)(s) = b(s)^T \cdot p(s)
\]

for each \(s \in S \), where \(b(s)^T \cdot x(z') \) is the linear projection of \([1 + g(z')] [1 + v(s')]\) into \(x(z') \), that is, it solves

\[
[1 + g(z')] [1 + v(s')] = b(s)^T \cdot x(z') + u(z')
\]

\[
0 = \sum_{s' \in S} \int x(s', \varepsilon') u(s', \varepsilon') dF(\varepsilon'|s') \pi(s'|s)
\]
for each $s \in S$, with u orthogonal to x. The price-dividend ratio v^* of the spanned part of the consumption equity is given by the fixed point of T^*:

$$T^*(v^*) (s) = v^* (s).$$

More explicitly, substitute out $b(s)$

$$b(s) = E_x \left(x (z') x (z')^T \right)^{-1} E_x (x (z') \left([1 + g(z')] [1 + v(s')] \right))$$

$$= \left(\sum_{s' \in S} \int x(s', \epsilon') x(s', \epsilon')^T \, dF(\epsilon'|s') \, \pi(s'|s) \right)^{-1} \times$$

$$\sum_{s' \in S} \int (x(s', \epsilon') \left([1 + g(z')] [1 + v(s')] \right)) \, dF(\epsilon'|s') \, \pi(s'|s).$$

We now describe a recursion whose fixed point is the price-dividend ratio $v_t = V_t/c_t$ in the Markov regime switching setting described above. For this, we let the stochastic discount factor $m_{t+1} = m(\epsilon_{t+1}, s_{t+1})$ be a function of ϵ_{t+1} and s_{t+1}, and the price-dividend ratio $v_t = v(s_t)$ be a function of s_t. We define the operator $T : R^n_+ \to R^n_+$ as

$$T(v)(s) = \min_{m \in R^n_+} \sum_{s' \in S} m(\epsilon', s') \left[1 + g(\epsilon', s') \right] \left[1 + v(s') \right] \, dF(\epsilon'|s') \cdot \pi(s'|s)$$

subject to

$$p(s) = \sum_{s' \in S} \int \left[m(\epsilon', s') \, x(\epsilon', s') \right] \, dF(\epsilon'|s') \cdot \pi(s'|s)$$

$$\sum_{s' \in S} m(\epsilon', s')^2 \, dF(\epsilon'|s') \cdot \pi(s'|s) \leq \frac{h(s)^2 + 1}{(1+y)^2}$$

where $h(s)$ is the bound on the conditional Sharpe ratio. The lower good deal bound for the price dividend ratio of the consumption equity is the fixed point of this operator, that is,

$$T(v)(s) = v(s)$$

for all $s \in S$.

10 Appendix D: Filter coefficients

$$a = \left[0.6250 \ 0.2251 \ 0.1592 \ 0.0750 \ -0.0000 \ -0.0450 \ -0.0531 \ -0.0322 \ 0.0000 \ 0.0250 \ 0.0319 \ 0.0205 \ -0.0000 \ -0.0173 \ -0.0228 \ -0.0150 \ 0.0000 \ 0.0133 \ 0.0177 \ 0.0119 \ -0.0191 \right].$$
11 Appendix E: Durable consumption shares

Rearranging the expression in the text gives

\[s_0 = \left\{ \frac{\partial U/\partial c^d_t}{\partial U/\partial c^0_{0s}} \right\} V^d_0 \left(\left\{ c^d \right\} \right) / \left[V^{ns}_0 \left(\left\{ c^{ns} \right\} \right) + \left\{ \frac{\partial U/\partial c^d_t}{\partial U/\partial c^0_{0s}} \right\} V^d_0 \left(\left\{ c^d \right\} \right) \right] \]

for the share of value of durable consumption equity to aggregate consumption equity. The following steps explain how we find an empirical counterpart to \(s_0 \). Tables 1 and 2 provide estimates for \(V^{ns}_0 \left(\left\{ c^{ns} \right\} \right) / c^{ns}_0 \). In the text we describe how to estimate \(V^d_0 \left(\left\{ c^d \right\} \right) / c^d_0 \), which is implemented in Table 4. Thus, the remaining task is to estimate \(\frac{\partial U/\partial c^d_t}{\partial U/\partial c^0_{0s}} c^d_0 / c^{ns}_0 \), which is the ratio of the value of durables consumption to the value of consumption of non-durables and services. To do this, we use assume that the stock of durables evolves as

\[c^d_t = c^d_{t-1} (1 - \delta) + e_t, \quad (11.1) \]

where \(\delta \) is the depreciation rate. Rearranging the equation we get

\[c^d_t = e_t \left(\frac{1}{1 - (1 - \delta) / \left(1 + g^d_t \right)} \right) \]

with \(1 + g^d_t \equiv c^d_t / c^d_{t-1} \).

In this setting, the per period user cost of the stock of durables, that is, the cost of having one more unit of durables for one period, measured in units of the stock of durables goods, is \(y^d + \delta / \left(1 + y^d \right) \), where \(y^d \) is the durable goods interest rate. A consumer’s first-order condition for the choice of durables versus non-durables is

\[\frac{\partial U/\partial c^d_t (z^t)}{\partial U/\partial c^{ns}_t (z^t)} = P^{de}_t \left(z^t \right) \frac{y^d + \delta}{1 + y^d}, \quad (11.2) \]

where \(P^{de}_t (z^t) \) is the price of durable expenditure goods relative to non-durable goods. The quantity \(P^{de}_t (z^t) (\delta + r) / \left(1 + y^d \right) \) is the relative price of one durable in period \(t \) in terms of period \(t \) non-durable goods. Multiplying (11.2) by \(c^d_t (z^t) / c^{ns}_t (z^t) \) and substituting \(c^d_t (z^t) \) in terms of expenditures \(e_t (z^t) \), depreciation rate \(\delta \), and growth rate of durables’ consumption \(g^d_t \), we obtain

\[\frac{\partial U/\partial c^d_t (z^t)}{\partial U/\partial c^{ns}_t (z^t)} c^d_t (z^t) \frac{y^d + \delta}{c^{ns}_t (z^t)} = P^{de}_t (z^t) e_t (z^t) \frac{(y^d + \delta) / \left(1 + y^d \right) \left(1 - (1 - \delta) / \left(1 + g^d_t \right) \right)}. \]

We generate a series for \(g^d_t \) using NIPA durable goods expenditure starting from a level that gives us the same average growth rate over the sample as for expenditure. For the ratio of the expenditure of durables to the expenditure share of non-durables and services, \(P^{de}_t (z^t) e_t (z^t) / c^{ns}_t (z^t) \), we
generate a series from the NIPA counterpart covering the whole period. The average of this series is 0.15, corresponding to a durable expenditure share of 0.13 = .15/(1+.15). Based on depreciation rates published by the BEA we choose a constant annual depreciation rate of 17.5%. Note, the BEA’s reported durable goods expenditure main components are, based on the first quarter of 2001, motor vehicles and parts, about 43%, and furniture and household equipment, about 37%. Combining the series for \(\frac{\partial U}{\partial c_d(t)} c^d(t) \) with the price/dividend ratios in Table 1 and Table 4 for the IID cases, we report the sample average for \(s_0 \). Note, the interest rate in durables \(r^d = 5.08\% \), is estimated as the sample average of the nominal interest rate minus the durable goods prices inflation; and the growth rate of durable stock \(g^d = 4.34\% \), is taken to be the average growth rate of durable expenditure.
References

